论文标题

$ \ mathbb {r}^d $,ii几乎嵌入简单复合物的硬度

Hardness of almost embedding simplicial complexes in $\mathbb{R}^d$, II

论文作者

Alkin, Emil

论文摘要

如果$ f(σ)\ cap f(τ)= \ varnothing $,a map $ f:k \ to \ mathbb {r}^d $几乎是嵌入的,则只要$ f(每当$σ,τ$都是$ k $的差异简单)。修复整数$ d,k \ geqslant 2 $,以便$ k+2 \ leqslant d \ leqslant \ frac {3k} 2+1 $。假设“一个周期的预映射是一个周期”,我们证明$ \ mathbf {np} $ - 识别有限$ k $二维复合物几乎嵌入性的算法问题的硬度。假设$ \ mathbf {p} \ ne \ ne \ mathbf {np} $(并且“一个周期的预映射是一个周期”),我们证明,嵌入障碍物对于$ k $ dimensional complextion不完整,对于$ \ \ \ \ \ \ \ mthbb {r}^d $ in Confipururation supporturation space而言。我们的证明概括了Skopenkov-tancer的证明此结果的证明,$ d = \ frac {3k} {2} {2} + 1 $。

A map $f: K \to \mathbb{R}^d$ of a simplicial complex is an almost embedding if $f(σ) \cap f(τ) = \varnothing$ whenever $σ, τ$ are disjoint simplices of $K$. Fix integers $d,k \geqslant 2$ such that $k+2 \leqslant d \leqslant\frac{3k}2+1$. Assuming that the "preimage of a cycle is a cycle" we prove $\mathbf{NP}$-hardness of the algorithmic problem of recognition of almost embeddability of finite $k$-dimensional complexes in $\mathbb{R}^d$. Assuming that $\mathbf{P} \ne \mathbf{NP}$ (and that the "preimage of a cycle is a cycle") we prove that the embedding obstruction is incomplete for $k$-dimensional complexes in $\mathbb{R}^d$ using configuration spaces. Our proof generalizes the Skopenkov-Tancer proof of this result for $d = \frac{3k}{2} + 1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源