论文标题

封闭子集具有可计数特征的高空空间

Hyperspaces with a countable character of closed subsets

论文作者

Liu, Chuan, Lin, Fucai

论文摘要

对于常规空间$ x $,Hyperspace $(Cl(x),τ_{f})$(分别,$(cl(x),τ_{v})$)是所有非空的封闭子集的空间,其中$ x $,带有fell Toupology(resp。Vietoris,Vietoris Topology)。在本文中,我们给出了空间$ x $的表征,使得超空间$(cl(x),τ_{f})$(resp。,$(cl(x),τ_{v})$)具有可数封闭子集的特征。我们主要证明$(cl(x),τ_f)$在每个闭合子集上都有一个可数的字符,并且仅当$ x $是紧凑的MetrizAble,而$(cl(x),τ_f)$在每个紧凑型子集中具有可数值的字符时,并且仅当$ x $是局部紧凑和可分离的Metrizrize的情况时,每个紧凑型子集具有可数值的字符。此外,我们证明$(\ Mathcal {k}(x),τ_v)$具有紧凑型$g_δ$属性,并且仅当$ x $具有紧凑型$g_δ$属性,并且每一个紧凑型子集的$ x $的每个紧凑型子集均为metrizable。

For a regular space $X$, the hyperspace $(CL(X), τ_{F})$ (resp., $(CL(X), τ_{V})$) is the space of all nonempty closed subsets of $X$ with the Fell topology (resp., Vietoris topology). In this paper, we give the characterization of the space $X$ such that the hyperspace $(CL(X), τ_{F})$ (resp., $(CL(X), τ_{V})$) with a countable character of closed subsets. We mainly prove that $(CL(X), τ_F)$ has a countable character on each closed subset if and only if $X$ is compact metrizable, and $(CL(X), τ_F)$ has a countable character on each compact subset if and only if $X$ is locally compact and separable metrizable. Moreover, we prove that $(\mathcal{K}(X), τ_V)$ have the compact-$G_δ$ property if and only if $X$ have the compact-$G_δ$ property and every compact subset of $X$ is metrizable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源