论文标题

在$ d(4)$ - Pairs $ \ {a,ka \} $带有$ k \ in \ in \ {2,3,6 \} $中

On the $D(4)$-pairs $\{a, ka\}$ with $k\in \{2,3,6\}$

论文作者

Adédji, Kouèssi Norbert, Trebješanin, Marija Bliznac, Filipin, Alan, Togbé, Alain

论文摘要

令$ a $和$ b = ka $为正整数,$ k \ in \ {2、3、6 \},$,使得$ ab+4 $是一个完美的正方形。在本文中,我们研究了$ d(4)$ - 对$ \ {a,ka \}的可扩展性。$更确切地说,我们证明,考虑到三个积极整数$ c $的家庭,取决于$ a,$ a,$ \ {a,b,b,b,b,c,d \} $是$ a的$ n e Enter the Offer the Offer the en e Enter the Onder the Onder the Onder Ond e Ens the Orter Ond e e Ens the Orter Ond e e Ens of Botern us n e e e e eys Onder的产品。 $$ d = a+b+c+\ frac {1} {2} \ left(abc \ pm \ pm \ sqrt {(ab+4)(ac+4)(ac+4)(bc+4)} \ right)。$ d $。

Let $a$ and $b=ka$ be positive integers with $k\in \{2, 3, 6\},$ such that $ab+4$ is a perfect square. In this paper, we study the extensibility of the $D(4)$-pairs $\{a, ka\}.$ More precisely, we prove that by considering three families of positive integers $c$ depending on $a,$ if $\{a, b, c, d\}$ is the set of positive integers which has the property that the product of any two of its elements increased by $4$ is a perfect square, then $d$ in given by $$d=a+b+c+\frac{1}{2}\left(abc\pm \sqrt{(ab+4)(ac+4)(bc+4)}\right).$$ As a corollary, we prove that any $D(4)$-quadruple which contains the pair $\{a, ka\}$ is regular.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源