论文标题
用激光器操纵核异构体:机制和前景
Manipulation of Nuclear Isomers with Lasers: Mechanisms and Prospects
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Over one hundred years have passed since the nuclear isomer was first introduced, in analogy with chemical isomers to describe long-lived excited nuclear states. In 1921, Otto Hahn discovered the first nuclear isomer $^{234m}$Pa. After that, step by step, it was realized that different types of nuclear isomers exist, including spin isomer, K isomer, seniority isomers, and ``shape and fission'' isomer. The spin isomer occurs when the spin change $ΔI$ of a transition is very large. The larger $ΔI$, the lower the electromagnetic transition rates, the longer the half-lives. The K-isomer exists due to the significant change in K, where K is the projection of the total angular momentum on the symmetry axis. The seniority isomers arise due to a very small transition probability in seniority conserving transitions around semi-magic nuclei, where the seniority, which corresponds to the number of unpaired nucleons, is a reasonably pure quantum number. For a so-called shape isomer, the inhibition of the decay transition comes from the associated shape changes. It is caused by that a nucleus is trapped in a deformed shape which is its secondary minimum and is hard to decay back to its ground state.