论文标题

零能量部分具有有限的p变差的dirichlet过程的示例

Example of a Dirichlet process whose zero energy part has finite p-variation

论文作者

Prokaj, Vilmos, Bondici, László

论文摘要

令$ b^h $为$ \ mathbb {r} $的分数布朗动作,带有hurst参数$ h \ in(0,1)$,$ f $是其路径抗体,$ f(0)= 0 $,让$ b $是标准的布朗尼运动,独立于$ b^h $。我们表明,零能量部分$ a_t = f(b_t) - \ int_0^t f'(b_s)$ f(b)$的db_s $ of $ f(b)$具有正面和有限的$ p $ - 在特殊意义上,对于$ p_0 = \ frac {2} {2} {1+h} $。我们还提供了一些有关某个中位过程的零能量部分的模拟结果,这些结果表明其4/3 $变化是积极且有限的。

Let $B^H$ be a fractional Brownian motion on $\mathbb{R}$ with Hurst parameter $H\in(0,1)$, $F$ be its pathwise antiderivative with $F(0)=0$, and let $B$ be a standard Brownian motion, independent of $B^H$. We show that the zero energy part $A_t=F(B_t)-\int_0^t F'(B_s)dB_s$ of $F(B)$ has positive and finite $p$-variation in a special sense for $p_0=\frac{2}{1+H}$. We also present some simulation results about the zero energy part of a certain median process which suggest that its $4/3$-variation is positive and finite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源