论文标题

Robin $ p $ -laplacian特征值的估算值

Estimates for Robin $p$-Laplacian eigenvalues of convex sets with prescribed perimeter

论文作者

Amato, Vincenzo, Gentile, Andrea, Masiello, Alba Lia

论文摘要

在本文中,我们证明了$ p $ -laplacian的第一个罗宾特征值的上限,具有正边界参数,以及$ plaplacian $ plaplacian的第一个Robin Eigenvalue的反向Faber-krahn类型不平等的定量版本,带有负面边界参数,convex set in Convex set in Concemencepeperecrecrecrecrecepepers perimeters。 这些证明是基于通过佩恩,魏姆伯格和波利亚引入的内部集合获得的比较参数。

In this paper, we prove an upper bound for the first Robin eigenvalue of the $p$-Laplacian with a positive boundary parameter and a quantitative version of the reverse Faber-Krahn type inequality for the first Robin eigenvalue of the $p$-Laplacian with negative boundary parameter, among convex sets with prescribed perimeter. The proofs are based on a comparison argument obtained by means of inner sets, introduced by Payne, Weimberger and Polya.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源