论文标题
近似观测值与计数一样困难
Approximating observables is as hard as counting
论文作者
论文摘要
我们研究了估计吉布斯分布的局部可观察物的计算复杂性。一个简单的组合示例是图中独立集的平均大小。在最近的一项工作中,我们建立了使用相应优化问题硬度和相关的相变行为的硬度近似独立集合的平均大小的NP硬度。相反,我们考虑了可以解决基础优化问题的设置。我们的主要贡献是通过从近似计数到估计局部可观察物的问题来对近似可观察到的广泛可观察到的复杂性进行分类。关键思想是使用可观察到的插值计数问题。 使用这种新方法,我们能够在二分图上研究可观察到的物体,在两部分图中,基础优化问题很容易,但计数问题被认为很难。先前硬度结果排除的最细门研究的图表是两部分图。我们建立了硬度,以估算最高度6的两分图中独立集的平均大小;更普遍地,我们显示出对两部分图上的抗磁磁2旋转系统的一般顶点 - 边缘可观察结果的紧密硬度结果。我们的技术超出了2-Spin系统,对于铁磁POTTS模型,我们建立了近似于同一区域中单色边数的硬度,因为已知的硬度是近似计数结果。
We study the computational complexity of estimating local observables for Gibbs distributions. A simple combinatorial example is the average size of an independent set in a graph. In a recent work, we established NP-hardness of approximating the average size of an independent set utilizing hardness of the corresponding optimization problem and the related phase transition behavior. Here, we instead consider settings where the underlying optimization problem is easily solvable. Our main contribution is to classify the complexity of approximating a wide class of observables via a generic reduction from approximate counting to the problem of estimating local observables. The key idea is to use the observables to interpolate the counting problem. Using this new approach, we are able to study observables on bipartite graphs where the underlying optimization problem is easy but the counting problem is believed to be hard. The most-well studied class of graphs that was excluded from previous hardness results were bipartite graphs. We establish hardness for estimating the average size of the independent set in bipartite graphs of maximum degree 6; more generally, we show tight hardness results for general vertex-edge observables for antiferromagnetic 2-spin systems on bipartite graphs. Our techniques go beyond 2-spin systems, and for the ferromagnetic Potts model we establish hardness of approximating the number of monochromatic edges in the same region as known hardness of approximate counting results.