论文标题

患者意识到积极学习的细粒度OCT分类

Patient Aware Active Learning for Fine-Grained OCT Classification

论文作者

Logan, Yash-yee, Benkert, Ryan, Mustafa, Ahmad, Kwon, Gukyeong, AlRegib, Ghassan

论文摘要

本文认为,从医学的角度来看,积极的学习更加明智。实际上,疾病在患者同类群中以不同的形式表现出来。现有的框架主要使用数学结构来设计基于不确定性或基于多样性的方法来选择最有用的样本。但是,这种算法并不能自然地表现出医疗界和医疗保健提供者的使用。因此,如果有的话,它们在临床环境中的部署非常有限。为此,我们提出了一个框架,将临床见解纳入了可以与现有算法合并的主动学习样本选择过程中。我们可以解释的主动学习框架捕获了患者的多种疾病表现,以提高OCT分类的泛化表现。经过全面的实验,我们报告说,将患者洞察力纳入主动学习框架中会产生匹配或超过两个架构上的五个常用范式的性能,其中一个数据集具有患者分布不平衡的数据集。此外,该框架将框架集成到现有的医疗实践中,因此可以由医疗保健提供者使用。

This paper considers making active learning more sensible from a medical perspective. In practice, a disease manifests itself in different forms across patient cohorts. Existing frameworks have primarily used mathematical constructs to engineer uncertainty or diversity-based methods for selecting the most informative samples. However, such algorithms do not present themselves naturally as usable by the medical community and healthcare providers. Thus, their deployment in clinical settings is very limited, if any. For this purpose, we propose a framework that incorporates clinical insights into the sample selection process of active learning that can be incorporated with existing algorithms. Our medically interpretable active learning framework captures diverse disease manifestations from patients to improve generalization performance of OCT classification. After comprehensive experiments, we report that incorporating patient insights within the active learning framework yields performance that matches or surpasses five commonly used paradigms on two architectures with a dataset having imbalanced patient distributions. Also, the framework integrates within existing medical practices and thus can be used by healthcare providers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源