论文标题

通过学习生成虚假的用户配置文件来先令黑框推荐系统

Shilling Black-box Recommender Systems by Learning to Generate Fake User Profiles

论文作者

Lin, Chen, Chen, Si, Zeng, Meifang, Zhang, Sheng, Gao, Min, Li, Hui

论文摘要

由于推荐系统(RS)在指导客户进行购买中的关键作用,因此有自然的动力,不道德的政党为利润做出欺骗。在本文中,我们研究了先令攻击,在该攻击中,对抗方为不当目的注入了许多假用户资料。常规的先令攻击方法缺乏攻击可转移性(即,攻击对某些受害者RS模型无效)和/或攻击隐形性(即,很容易检测到注射的配置文件)。为了克服这些问题,我们提出了基于生成对抗网络的新型攻击模型。 Log-Up从采样的``模板''中学习了来自真实用户的用户行为模式,并构建了伪造的用户配置文件。为了模拟真实的用户,Lige-Up中的发电机直接输出离散评级。为了增强攻击传递性,通过在替代RS模型上最大化攻击性能来优化生成器的参数。为了提高攻击的隐形性,Leg-Up采用歧视器来指导生成器生成无法检测到的假用户配置文件。基准测试的实验表明,在广泛的受害者RS模型上,腿部超过了最先进的先令攻击方法。我们工作的源代码可在以下网址提供:https://github.com/xmudm/shillingattack。

Due to the pivotal role of Recommender Systems (RS) in guiding customers towards the purchase, there is a natural motivation for unscrupulous parties to spoof RS for profits. In this paper, we study Shilling Attack where an adversarial party injects a number of fake user profiles for improper purposes. Conventional Shilling Attack approaches lack attack transferability (i.e., attacks are not effective on some victim RS models) and/or attack invisibility (i.e., injected profiles can be easily detected). To overcome these issues, we present Leg-UP, a novel attack model based on the Generative Adversarial Network. Leg-UP learns user behavior patterns from real users in the sampled ``templates'' and constructs fake user profiles. To simulate real users, the generator in Leg-UP directly outputs discrete ratings. To enhance attack transferability, the parameters of the generator are optimized by maximizing the attack performance on a surrogate RS model. To improve attack invisibility, Leg-UP adopts a discriminator to guide the generator to generate undetectable fake user profiles. Experiments on benchmarks have shown that Leg-UP exceeds state-of-the-art Shilling Attack methods on a wide range of victim RS models. The source code of our work is available at: https://github.com/XMUDM/ShillingAttack.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源