论文标题

SensorStream:使用IoT传感器数据丰富事件日志的XES扩展

SensorStream: An XES Extension for Enriching Event Logs with IoT-Sensor Data

论文作者

Grüger, Joscha, Malburg, Lukas, Mangler, Juergen, Bertrand, Yannis, Rinderle-Ma, Stefanie, Bergmann, Ralph, Asensio, Estefanía Serral

论文摘要

流程管理和过程编排/执行目前是热门话题;自动化和行业4.0等普遍的趋势需要解决方案,使领域专家可以轻松地在包括制造业和医疗保健在内的各个领域建模和执行流程。反过来,这些域依赖于硬件和软件之间的紧密集成,即通过物联网(IoT)。虽然过程执行是关于驱动的,即主动触发行动并等待其完成,而附带的物联网传感器则监控人类和环境。这些传感器生成大量的程序,离散和连续数据流,这些数据流是了解过程主体(例如生产零件),结果(例如数量和质量)以及错误原因的关键。过程与他们的物联网环境不断发展。因此,这需要由过程生成的数据的联合存储,因此需要由IoT传感器生成的数据。在本文中,我们介绍了过程日志标准格式XE的扩展,即感觉到。 SensorStream使IoT数据可以连接到处理事件,以及一组语义注释,以描述数据收集过程中的情况和环境。这允许保留数据分析所需的完整上下文,以便即使场景或硬件工件正在迅速变化,也可以分析日志。通过其他语义注释,我们设想XES扩展日志格式是基于创建(半)自动分析管道的固体,该管道可以通过自动提供数据可视化甚至过程洞察力来支持域专家。

Process management and process orchestration/execution are currently hot topics; prevalent trends such as automation and Industry 4.0 require solutions which allow domain-experts to easily model and execute processes in various domains, including manufacturing and health-care. These domains, in turn, rely on a tight integration between hardware and software, i.e. via the Internet of Things (IoT). While process execution is about actuation, i.e. actively triggering actions and awaiting their completion, accompanying IoT sensors monitor humans and the environment. These sensors produce large amounts of procedural, discrete, and continuous data streams, that hold the key to understanding the quality of process subjects (e.g. produced parts), outcome (e.g. quantity and quality), and error causes. Processes constantly evolve in conjunction with their IoT environment. This requires joint storage of data generated by processes, with data generated by the IoT sensors is therefore needed. In this paper, we present an extension of the process log standard format XES, namely SensorStream. SensorStream enables to connect IoT data to process events, as well as a set of semantic annotations to describe the scenario and environment during data collection. This allows to preserve the full context required for data-analysis, so that logs can be analyzed even when scenarios or hardware artifacts are rapidly changing. Through additional semantic annotations, we envision the XES extension log format to be a solid based for the creation of a (semi-)automatic analysis pipeline, which can support domain experts by automatically providing data visualization, or even process insights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源