论文标题
基于说明的反事实再培训(XCR):黑框模型的校准方法
Explanation-based Counterfactual Retraining(XCR): A Calibration Method for Black-box Models
论文作者
论文摘要
随着可解释的人工智能(XAI)的快速发展,过去的一系列工作表明,基于扰动后的HOC XAI模型中对分布式(OOD)问题的担忧,并且解释在社会上是错误对准的。我们探讨了使用近似值来模仿黑盒模型的行为的事后解释方法的局限性。然后,我们提出了基于解释的反事实再培训(XCR),提取迅速提取的重要性。 XCR应用了XAI模型生成的解释,作为反事实输入,以重新培训黑框模型来解决OOD和社会错位问题。对流行图像数据集的评估表明,XCR只能保留12.5%的最关键特征而不更改黑色框模型结构时,可以提高模型性能。此外,对腐败数据集基准的评估表明,XCR对改善模型鲁棒性非常有帮助,并积极影响OOD问题的校准。即使在验证集中未经校准像某些OOD校准方法一样,损坏的数据度量的表现优于现有方法。如果应用了验证集上的校准,我们的方法还可以在OOD校准度量上使用当前的OOD校准方法。
With the rapid development of eXplainable Artificial Intelligence (XAI), a long line of past work has shown concerns about the Out-of-Distribution (OOD) problem in perturbation-based post-hoc XAI models and explanations are socially misaligned. We explore the limitations of post-hoc explanation methods that use approximators to mimic the behavior of black-box models. Then we propose eXplanation-based Counterfactual Retraining (XCR), which extracts feature importance fastly. XCR applies the explanations generated by the XAI model as counterfactual input to retrain the black-box model to address OOD and social misalignment problems. Evaluation of popular image datasets shows that XCR can improve model performance when only retaining 12.5% of the most crucial features without changing the black-box model structure. Furthermore, the evaluation of the benchmark of corruption datasets shows that the XCR is very helpful for improving model robustness and positively impacts the calibration of OOD problems. Even though not calibrated in the validation set like some OOD calibration methods, the corrupted data metric outperforms existing methods. Our method also beats current OOD calibration methods on the OOD calibration metric if calibration on the validation set is applied.