论文标题
ICC ++:使用图像构图画布的艺术历史语料库的可解释图像检索
ICC++: Explainable Image Retrieval for Art Historical Corpora using Image Composition Canvas
论文作者
论文摘要
图像组成有助于研究图像结构,并有助于发现跨艺术形式和样式描绘的基础场景的语义。近年来,随着艺术品的数字化,可能会将成千上万个特定场景或叙述的图像联系在一起。但是,将这些数据与一致的客观性联系起来可能是一项高度挑战和耗时的任务。在这项工作中,我们提出了一种称为图像组成画布(ICC ++)的新方法,以比较和检索具有相似组成元素的图像。 ICC ++是对ICC的改进,专门研究由Max Imdahl的工作激发的低水平和高级功能(组成元素)。为此,我们与传统和最先进的方法(SOTA)方法进行了严格的定量和定性比较,表明我们所提出的方法优于所有方法。结合深度功能,我们的方法优于最佳的基于深度学习的方法,为数字人文学科的可解释机器学习打开了研究方向。我们将发布代码和数据后的数据。
Image compositions are helpful in the study of image structures and assist in discovering the semantics of the underlying scene portrayed across art forms and styles. With the digitization of artworks in recent years, thousands of images of a particular scene or narrative could potentially be linked together. However, manually linking this data with consistent objectiveness can be a highly challenging and time-consuming task. In this work, we present a novel approach called Image Composition Canvas (ICC++) to compare and retrieve images having similar compositional elements. ICC++ is an improvement over ICC specializing in generating low and high-level features (compositional elements) motivated by Max Imdahl's work. To this end, we present a rigorous quantitative and qualitative comparison of our approach with traditional and state-of-the-art (SOTA) methods showing that our proposed method outperforms all of them. In combination with deep features, our method outperforms the best deep learning-based method, opening the research direction for explainable machine learning for digital humanities. We will release the code and the data post-publication.