论文标题

De Sitter空间的可观察到的代数

An Algebra of Observables for de Sitter Space

论文作者

Chandrasekaran, Venkatesa, Longo, Roberto, Penington, Geoff, Witten, Edward

论文摘要

我们描述了在De Sitter空间中静态斑块的可观察物的代数,运营商在观察者的世界线上着装。代数是II型$ _1 $的von Neumann代数。对于这种代数的状态有一个自然的熵概念。有一个最大的熵状态,对应于空置的空位空间,以及II型$ _1 $代数的任何半经典状态的熵都同意,直至添加剂常数独立于状态,而预期的概括性熵$ s _ {\ text {gen}}}} =(a/4g_n)+s/4g_n)+s+s _ =由于定义II型$ _1 $代数的熵涉及的重新归一化,因此存在任意的添加剂常数。

We describe an algebra of observables for a static patch in de Sitter space, with operators gravitationally dressed to the worldline of an observer. The algebra is a von Neumann algebra of Type II$_1$. There is a natural notion of entropy for a state of such an algebra. There is a maximum entropy state, which corresponds to empty de Sitter space, and the entropy of any semiclassical state of the Type II$_1$ algebras agrees, up to an additive constant independent of the state, with the expected generalized entropy $S_{\text{gen}}=(A/4G_N)+S_{\text{out}}$. An arbitrary additive constant is present because of the renormalization that is involved in defining entropy for a Type II$_1$ algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源