论文标题

光子晶谐振器中具有光学参数振荡的可调激光器

Tunable lasers with optical-parametric oscillation in photonic-crystal resonators

论文作者

Black, Jennifer A., Brodnik, Grant, Liu, Haixin, Yu, Su-Peng, Carlson, David R., Zang, Jizhao, Briles, Travis C., Papp, Scott B.

论文摘要

通过设计访问激光波长,尤其是具有集成光子学的访问,对于推进量子传感器(如光时时钟和量子信息系统)以及光学通信中的开放机会至关重要。半导体激光增益提供了示例性的效率和整合,而仅在发达的波长频段中。另外,非线性光学需要控制相位匹配,但是泵激光器向设计波长的非线性转换的原理是可扩展的。我们通过使用光子晶格谐振器(PHCR)的多功能自定义(PHCR)报告了激光波长的访问。通过控制PHCR的带隙,我们可以在1234-2093 nm的波长范围内使用1550 nm泵和1016-1110 nm的波长生成,并使用1064 nm泵。此外,我们的可调激光平台提供泵至侧带的转换效率> 10%,并且在整个输出范围内可忽略不计。从激光设计到非线性动力学的模拟,我们使用一个预测系统特性的Lugiato-Lefever框架,包括PHCR中的双向OPO生成以及与我们的观察结果一致的转换效率。我们的实验通过使用PHCR OPOS设计引入可调激光器,从而在集成光子学中提供了关键的功能。

By design access to laser wavelength, especially with integrated photonics, is critical to advance quantum sensors like optical clocks and quantum-information systems, and open opportunities in optical communication. Semiconductor-laser gain provides exemplary efficiency and integration but merely in developed wavelength bands. Alternatively, nonlinear optics requires control of phase matching, but the principle of nonlinear conversion of a pump laser to a designed wavelength is extensible. We report on laser-wavelength access by versatile customization of optical-parametric oscillation (OPO) with a photonic-crystal resonator (PhCR). By controlling the bandgap of a PhCR, we enable OPO generation across a wavelength range of 1234-2093 nm with a 1550 nm pump and 1016-1110 nm with a 1064 nm pump. Moreover, our tunable laser platform offers pump-to-sideband conversion efficiency of >10% and negligible additive optical-frequency noise across the output range. From laser design to simulation of nonlinear dynamics, we use a Lugiato-Lefever framework that predicts the system characteristics, including bi-directional OPO generation in the PhCR and conversion efficiency in agreement with our observations. Our experiments introduce tunable lasers by design with PhCR OPOs, providing critical functionalities in integrated photonics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源