论文标题

核结构中短距离相关与费米海之间的纠缠熵

The Entanglement Entropy between Short Range Correlations and the Fermi Sea in Nuclear Structure

论文作者

Pazy, Ehoud

论文摘要

我们根据核标度分离计算短距离相关性(SRC)的核结构轨道纠缠熵。具体而言,SRC轨道与系统的其余部分之间的纠缠。应该强调的是,这是一个单核,而不是质子和中子之间的一对纠缠熵。纠缠源于核子在费米动量上方占据动量状态的概率。我们将细胞核的动量空间分为两个部分,以使细胞核可以占据波函数的曲折部分,即费米海(Fermi Sea)(FS)和分别占据高弹药src部分。我们获得的轨道熵在这两个部分之间,我们基本上定义了两个动量子空间,一个子空间包含所有低动量FS状态,另一个包含一个高弹药部分为SRC“轨道”状态。对于计算,我们采用了由相似性归一组建立的低和高摩肌的解耦,SRC被视为可以占用的进一步的“轨道”。由于核接触给出了单个SRC的占用概率,因此我们能够通过采用广义接触形式主义来获得SRC轨道纠缠熵的简单一般表达。核结构的SRC轨道纠缠熵的通用公式根据核接触,使我们能够以质量数($ a $ a $ a $ a $ a)获得熵的比例。我们发现,与许多量子系统的纠缠熵与表面积扩展不同,大核中与SRC相关的轨道纠缠熵是线性依赖于$ a $ a $的,即证明它是广泛的。

We calculate the nuclear structure orbital entanglement entropy of short range correlations (SRC) based on the nuclear scale separation. Specifically, the entanglement between the SRC orbitals and the rest of the system. It should be stressed that this is a single nucleon not a pair entanglement entropy between the proton and neutron. The entanglement arises from the probability for a nucleon to occupy a momentum state above the Fermi momentum. We separate the momentum space of the nucleus into two parts such that nucleons can occupy the meanfield part of the wave function, i.e. Fermi sea (FS) and separately the high-momentum SRC part. The orbital entropy we obtain is between these two parts where we essentially define two momentum subspaces, one containing all the low momentum FS states and the other the high-momentum part as a SRC "orbital" state. For the calculation we employ the decoupling of low and high-momenta which was established by the similarity normalization group the SRC is viewed as a further "orbital" which can be multiply occupied. Since the probability of the occupation of a single SRC is given by the nuclear contact we are able to obtain a simple general expression of the orbital entanglement entropy for SRC by employing the generalized contact formalism. This general formula for the SRC orbital entanglement entropy of a nuclear structure in terms of the nuclear contact, allows us to obtain the scaling of the entropy in terms the mass number, $A$. We find that, unlike the entanglement entropy of many quantum systems which scales with the surface area, the orbital entanglement entropy associated with the SRC in large nuclei is linearly dependent on $A$, i.e., it is shown to be extensive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源