论文标题

具有有限密度类型初始数据的非局部非线性schrödinger方程的长期渐近行为

Long-time asymptotic behavior of the nonlocal nonlinear Schrödinger equation with finite density type initial data

论文作者

Tian, Shou-Fu, Li, Zhi-Qiang, Yang, Jin-Jie

论文摘要

在这项工作中,我们采用$ \ bar {\ partial} $ - 最陡的下降方法来研究非局部非线性schrödinger(nnls)方程的cauchy问题,具有有限密度类型的初始条件,在加权Sobolev Space $ \ Mathcal {H}(H}(H}(H}(\ Mathbb r}))中。基于LAX频谱问题,构建了与原始问题相对应的Riemann-Hilbert问题,以使NNLS方程的解决方案具有有限密度类型的初始边界值条件。通过开发$ \ bar {\ partial} $ - deift-zhou非线性陡峭下降方法的概括,我们将领先顺序近似近似于解决方案$ q(x,t)$在时空区域中,$ \ left(\ frac {x}} {x} {2t} {2t} {2t} {2t} {2t} {2t} {2t} $ $ a $ a $ a $ a $ a $ k)真正的常数),并为错误衰减的界限作为$ | t | \ rightarrow \ infty $。 Based on the resulting asymptotic behavior, the asymptotic approximation of the NNLS equation is characterized with the soliton term confirmed by $N(Λ)$-soliton on discrete spectrum and the $t^{-\frac{1}{2}}$ order term on continuous spectrum with residual error up to $ O(t^{ - \ frac {3} {4}})$。

In this work, we employ the $\bar{\partial}$-steepest descent method to investigate the Cauchy problem of the nonlocal nonlinear Schrödinger (NNLS) equation with finite density type initial conditions in weighted Sobolev space $\mathcal{H}(\mathbb{R})$. Based on the Lax spectrum problem, a Riemann-Hilbert problem corresponding to the original problem is constructed to give the solution of the NNLS equation with the finite density type initial boundary value condition. By developing the $\bar{\partial}$-generalization of Deift-Zhou nonlinear steepest descent method, we derive the leading order approximation to the solution $q(x,t)$ in soliton region of space-time, $\left(\frac{x}{2t}\right)=ξ$ for any fixed $ξ=\in (1,K)$($K$ is a sufficiently large real constant), and give bounds for the error decaying as $|t|\rightarrow\infty$. Based on the resulting asymptotic behavior, the asymptotic approximation of the NNLS equation is characterized with the soliton term confirmed by $N(Λ)$-soliton on discrete spectrum and the $t^{-\frac{1}{2}}$ order term on continuous spectrum with residual error up to $O(t^{-\frac{3}{4}})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源