论文标题
基于CT纹理的定量纹理方法,用于预测纤维间肺疾病模式的诊断和预后
Quantitative CT texture-based method to predict diagnosis and prognosis of fibrosing interstitial lung disease patterns
论文作者
论文摘要
目的:利用高分辨率定量CT(QCT)成像特征来预测纤维间肺肺疾病(ILD)的诊断和预后。方法:40名ILD患者(20例常规间质性肺炎(UIP),20个非UIP模式ILD)由2位放射科医生的专家共识分类,随后持续了7年。记录了临床变量。分割肺场后,使用基于晶格的方法(TM模型)提取了总共26个纹理特征。将TM模型与先前基于直方图的模型(HM)进行了比较,以便将UIP与非UIP分类。对于预后评估,进行了生存分析,将专家诊断标签与TM指标进行比较。结果:在分类分析中,TM模型的表现优于AUC为0.70的HM方法。虽然在COX回归分析中,UIP与非UIP专家标签的生存曲线在统计学上并没有差异,但TM QCT特征允许该队列的统计分区分区。结论:TM模型在区分非UIP模式方面优于HM模型。最重要的是,TM允许将队列分配为不同的生存群体,而专家UIP与非UIP标签则不得。 QCT TM模型可以改善ILD的诊断,并提供更准确的预后,更好地指导患者管理。
Purpose: To utilize high-resolution quantitative CT (QCT) imaging features for prediction of diagnosis and prognosis in fibrosing interstitial lung diseases (ILD). Approach: 40 ILD patients (20 usual interstitial pneumonia (UIP), 20 non-UIP pattern ILD) were classified by expert consensus of 2 radiologists and followed for 7 years. Clinical variables were recorded. Following segmentation of the lung field, a total of 26 texture features were extracted using a lattice-based approach (TM model). The TM model was compared with previously histogram-based model (HM) for their abilities to classify UIP vs non-UIP. For prognostic assessment, survival analysis was performed comparing the expert diagnostic labels versus TM metrics. Results: In the classification analysis, the TM model outperformed the HM method with AUC of 0.70. While survival curves of UIP vs non-UIP expert labels in Cox regression analysis were not statistically different, TM QCT features allowed statistically significant partition of the cohort. Conclusions: TM model outperformed HM model in distinguishing UIP from non-UIP patterns. Most importantly, TM allows for partitioning of the cohort into distinct survival groups, whereas expert UIP vs non-UIP labeling does not. QCT TM models may improve diagnosis of ILD and offer more accurate prognostication, better guiding patient management.