论文标题
通过广阔的紫外线卫星的重力波随访的前景:Dorado案例研究
Prospects of Gravitational Wave Follow-up Through a Wide-field Ultra-violet Satellite: a Dorado Case Study
论文作者
论文摘要
从二进制神经元星合并GW170817和电磁对应物GRB170817和AT2017GFO启动引力波多通电者天文学领域的引力波GRB170817和AT2017GFO的检测。 AT2017GFO的光学红色至接近红外发射(“红色”分量)很容易被解释为由快速中子捕获(KilOnova)产生的新产生的核的衰减产生的。但是,在早期(长达1.5天)占主导地位的光学蓝色发射(“蓝色”组件)的超紫罗莱岩对其驾驶物理学尚无共识。在许多解释中,两个主要的竞争者是来自灯笼贫乏的弹出组件或冲击相互作用(Cocoon发射)的Kilonova辐射。在这项工作中,我们模拟了AT2017GFO样光曲线并进行贝叶斯分析,以研究能够快速引力波随访的超紫罗莱珠卫星是否可以区分驱动早期“蓝色”成分的物理过程。我们发现,多拉多样的超紫色卫星具有50平方英度。如果数据收集在3.2或5.2小时内开始,则可以将视场和20.5的限制幅度(AB)(AB)(AB)分为10分钟,最高至少160 mpc。我们还研究了可以通过获得的光度法来限制哪些参数的程度。我们发现,虽然单独的超紫罗兰数据限制了控制外喷射特性的参数,但基于地面的光学和空间基超紫罗兰数据的组合允许对Kilonova模型的所有参数(最高160 MPC)的所有参数都严格约束。这些结果表明,像多拉多这样的超紫色使命将为合并后系统的早期演变及其驱动排放物理学提供独特的见解。
The detection of gravitational waves from binary neuron star merger GW170817 and electromagnetic counterparts GRB170817 and AT2017gfo kick-started the field of gravitational wave multimessenger astronomy. The optically red to near infra-red emission (`red' component) of AT2017gfo was readily explained as produced by the decay of newly created nuclei produced by rapid neutron capture (a kilonova). However, the ultra-violet to optically blue emission (`blue' component) that was dominant at early times (up to 1.5 days) received no consensus regarding its driving physics. Among many explanations, two leading contenders are kilonova radiation from a lanthanide-poor ejecta component or shock interaction (cocoon emission). In this work, we simulate AT2017gfo-like light curves and perform a Bayesian analysis to study whether an ultra-violet satellite capable of rapid gravitational wave follow-up, could distinguish between physical processes driving the early `blue' component. We find that a Dorado-like ultra-violet satellite, with a 50 sq. deg. field of view and a limiting magnitude (AB) of 20.5 for a 10 minute exposure is able to distinguish radiation components up to at least 160 Mpc if data collection starts within 3.2 or 5.2 hours for two possible AT2017gfo-like light curve scenarios. We also study the degree to which parameters can be constrained with the obtained photometry. We find that, while ultra-violet data alone constrains parameters governing the outer ejecta properties, the combination of both ground-based optical and space-based ultra-violet data allows for tight constraints for all but one parameter of the kilonova model up to 160 Mpc. These results imply that an ultra-violet mission like Dorado would provide unique insights into the early evolution of the post-merger system and its driving emission physics.