论文标题
SNN2ANN:一个快速且记忆效率的培训框架,用于峰值神经网络
SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking Neural Networks
论文作者
论文摘要
尖峰神经网络是低功率环境的有效计算模型。基于SPIKE的BP算法和ANN-TO-SNN(ANN2SNN)转换是SNN培训的成功技术。然而,尖峰碱BP训练速度很慢,需要大量的记忆成本。尽管Ann2NN提供了一种低成本的培训SNN的方式,但它需要许多推理步骤才能模仿训练有素的ANN以表现良好。在本文中,我们提出了一个snn-to-ang(SNN2ANN)框架,以快速和记忆的方式训练SNN。 SNN2ANN由2个组成部分组成:a)ANN和SNN和b)尖峰映射单元之间的重量共享体系结构。首先,体系结构在ANN分支上训练重量共享参数,从而快速训练和SNN的记忆成本较低。其次,尖峰映射单元确保ANN的激活值是尖峰特征。结果,可以通过训练ANN分支来优化SNN的分类误差。此外,我们设计了一种自适应阈值调整(ATA)算法来解决嘈杂的尖峰问题。实验结果表明,我们的基于SNN2ANN的模型在基准数据集(CIFAR10,CIFAR100和TININE-IMAGENET)上表现良好。此外,SNN2ANN可以在0.625倍的时间步长,0.377倍训练时间,0.27倍GPU内存成本以及基于SPIKE的BP模型的0.33倍尖峰活动下实现可比精度。
Spiking neural networks are efficient computation models for low-power environments. Spike-based BP algorithms and ANN-to-SNN (ANN2SNN) conversions are successful techniques for SNN training. Nevertheless, the spike-base BP training is slow and requires large memory costs. Though ANN2NN provides a low-cost way to train SNNs, it requires many inference steps to mimic the well-trained ANN for good performance. In this paper, we propose a SNN-to-ANN (SNN2ANN) framework to train the SNN in a fast and memory-efficient way. The SNN2ANN consists of 2 components: a) a weight sharing architecture between ANN and SNN and b) spiking mapping units. Firstly, the architecture trains the weight-sharing parameters on the ANN branch, resulting in fast training and low memory costs for SNN. Secondly, the spiking mapping units ensure that the activation values of the ANN are the spiking features. As a result, the classification error of the SNN can be optimized by training the ANN branch. Besides, we design an adaptive threshold adjustment (ATA) algorithm to address the noisy spike problem. Experiment results show that our SNN2ANN-based models perform well on the benchmark datasets (CIFAR10, CIFAR100, and Tiny-ImageNet). Moreover, the SNN2ANN can achieve comparable accuracy under 0.625x time steps, 0.377x training time, 0.27x GPU memory costs, and 0.33x spike activities of the Spike-based BP model.