论文标题
Lorentzian Taub-nut空位:MISNER弦乐和第一定律
Lorentzian Taub-NUT spacetimes: Misner string charges and the first law
论文作者
论文摘要
由Lorentzian Taub-Nut空间热力学的最新活动激励,我们计算了这些空间的保守电荷。我们发现沿Misner弦分布的其他质量,螺母,角动量,电和磁电荷密度。需要这些额外的费用来说明地平线和无穷大的上述费用值之间的差异。我们为Taub-nut空间提出了一种不受约束的热力学处理,我们将螺母电荷$ n $作为相关的热力学数量,其化学势ϕ_n。这种处理中的内部能量是m-n ϕ_n而不是质量M。这种方法导致熵是地平线面积的四分之一,所有热力学量满足第一定律,吉布斯 - 杜哈姆人的关系以及Smarr的关系。我们找到了第一定律的一般形式,其中数量取决于任意参数。要求第一定律独立于该任意参数或在电磁双重性下不变的导致独特的形式,该形式取决于MISNER String电荷和磁性电荷。 Misner String指控在第一定律中起着至关重要的作用,没有它们,第一定律就不满意。
Motivated by recent activities in Lorentzian Taub-NUT space thermodynamics, we calculate conserved charges of these spacetimes. We find additional mass, nut, angular momentum, electric and magnetic charge densities distributed along Misner string. These additional charges are needed to account for the difference between the values of the above charges at horizon and at infinity. We propose an unconstrained thermodynamical treatment for Taub-NUT spaces, where we introduce the nut charge $n$ as a relevant thermodynamic quantity with its chemical potential ϕ_n. The internal energy in this treatment is M-nϕ_n rather than the mass M. This approach leads to an entropy which is a quarter of the area of the horizon and all thermodynamic quantities satisfy the first law, Gibbs-Duhem relation as well as Smarr's relation. We found a general form of the first law where the quantities depend on an arbitrary parameter. Demanding that the first law is independent of this arbitrary parameter or invariant under electric-magnetic duality leads to a unique form which depends on Misner string electric and magnetic charges. Misner string charges play an essential role in the first law, without them the first law is not satisfied.