论文标题

由于半圆形灵感引起的度量扰动的缓慢演变成schwarzschild黑洞

Slow evolution of the metric perturbation due to a quasicircular inspiral into a Schwarzschild black hole

论文作者

Durkan, Leanne, Warburton, Niels

论文摘要

极端质量比率灵感(EMRIS)是通过Millihertz空间探测器检测引力辐射小说的最备受期待的来源之一。为了准确估计EMRI的参数并进行一般相对性的精确测试,其模型应以较小的质量比例通过二阶结合自力学理论。由于其极高的质量比,EMRIS Inspiral在离合并足够远时会缓慢。因此,一阶度量扰动的缓慢演变有助于二阶度量扰动的来源,并且必须在EMRI波形模型中考虑。在本文中,我们计算了在频域中的schwarzschild背景上的lorenz仪表中的一阶度量扰动的缓慢演变。 Lorenz量规溶液用于一阶度量扰动及其慢速进化,是通过从Regge-Wheeler量规溶液的量规变换获得的。除了量规场之外,还使用部分消灭剂的方法确定了Regge-Wheeler和Zerilli Master功能的缓慢演变。

Extreme mass-ratio inspirals (EMRIs) are one of the most highly anticipated sources of gravitational radiation novel to detection by millihertz space-based detectors. To accurately estimate the parameters of EMRIs and perform precision tests of general relativity, their models should incorporate self-force theory through second-order in the small mass ratio. Due to their extreme mass ratio, EMRIs inspiral slowly when sufficiently far from merger. As such, the slow evolution of the first-order metric perturbation contributes to the source for the second-order metric perturbation, and must be accounted for in EMRI waveform models. In this paper we calculate the slow evolution of the first-order metric perturbation in the Lorenz gauge for quasicircular orbits on a Schwarzschild background in the frequency domain. Lorenz gauge solutions to the first-order metric perturbation and its slow evolution are obtained via a gauge transformation from Regge-Wheeler gauge solutions. The slow evolution of Regge-Wheeler and Zerilli master functions, in addition to a gauge field are determined using the method of partial annihilators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源