论文标题
广义量子电动力学:一环校正
Generalized quantum electrodynamics: one-loop correction
论文作者
论文摘要
在本文中,我们提供了有关量子电动力学辐射校正$(3+1)$尺寸的辐射校正的最新信息。为此,我们通过包括较高的导数场来引入协变光子传播器的几何适应。这种推导,所谓的广义量子电动力学是由稳定性和单位性特征的动机。该理论通过扩大旋转器相互作用的空间参数来提供量子电动力学的自然且自洽的扩展。特别是,Haag $'$ s定理会由于其对量子场理论基础的不一致而破坏了相互作用图片的扰动表征。为了解决这个问题,我们在海森伯格图片中开发了我们的扰动方法,并使用它以$ 1 $ -loop来调查操作员电流的行为。我们发现$ 2 $ - 和$ 3 $ - 点相关功能分别是紫外线有限,电子能源和顶点校正。另一方面,我们还解释了仅在$ e^2 $订单下,真空极化如何保持紫外线。最后,我们评估了异常的磁矩,这使我们能够为Podolsky参数指定下限值。
In this paper, we give an update on divergent problems concerning the radiative corrections of quantum electrodynamics in $(3+1)$ dimensions. In doing so, we introduce a geometric adaptation for the covariant photon propagator by including a higher derivative field. This derivation, so-called generalized quantum electrodynamics, is motivated by the stability and unitarity features. This theory provides a natural and self-consistent extension of the quantum electrodynamics by enlarging the space parameter of spinor-gauge interactions. In particular, Haag$'$s theorem undermines the perturbative characterization of the interaction picture due to its inconsistency on quantum field theory foundations. To circumvent this problem, we develop our perturbative approach in the Heisenberg picture and use it to investigate the behavior of the operator current at $1$-loop. We find the $2$- and $3$-point correlation functions are ultraviolet finite, electron self-energy and vertex corrections, respectively. On the other hand, we also explain how the vacuum polarization remains ultraviolet divergent only at $e^2$ order. Finally, we evaluate the anomalous magnetic moment, which allows us to specify a lower bound value for the Podolsky parameter.