论文标题

通过关系原型实体利用知识图中的全球语义相似性

Exploiting Global Semantic Similarities in Knowledge Graphs by Relational Prototype Entities

论文作者

Wang, Xueliang, Chen, Jiajun, Wu, Feng, Wang, Jie

论文摘要

知识图(KG)嵌入旨在学习连续矢量空间中kg的实体和关系的潜在表示。一个经验观察是,与相同关系相关的头部(尾部)实体通常具有相似的语义属性 - 特别是它们通常属于同一类别 - 无论他们在kg中彼此之间有多远的距离;也就是说,他们具有全球语义相似性。但是,许多现有的方法基于本地信息得出了KG嵌入,这些信息无法有效地捕获实体之间的这种全球语义相似性。为了应对这一挑战,我们提出了一种新颖的方法,该方法介绍了一组称为\ textit {\ textbf {关系原型实体}}的虚拟节点,以表示由相同关系连接的头和尾部实体的原型。通过强制实体的嵌入靠近其相关的原型的嵌入,我们的方法可以有效地鼓励实体的全球语义相似性(可以在kg中很远 - 通过相同的关系相连。实体一致性和KG完成任务的实验表明,我们的方法显着胜过最近的最新方法。

Knowledge graph (KG) embedding aims at learning the latent representations for entities and relations of a KG in continuous vector spaces. An empirical observation is that the head (tail) entities connected by the same relation often share similar semantic attributes -- specifically, they often belong to the same category -- no matter how far away they are from each other in the KG; that is, they share global semantic similarities. However, many existing methods derive KG embeddings based on the local information, which fail to effectively capture such global semantic similarities among entities. To address this challenge, we propose a novel approach, which introduces a set of virtual nodes called \textit{\textbf{relational prototype entities}} to represent the prototypes of the head and tail entities connected by the same relations. By enforcing the entities' embeddings close to their associated prototypes' embeddings, our approach can effectively encourage the global semantic similarities of entities -- that can be far away in the KG -- connected by the same relation. Experiments on the entity alignment and KG completion tasks demonstrate that our approach significantly outperforms recent state-of-the-arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源