论文标题
较低维度$ s^1 $ -InvariantKähler-Einstein指标通过可集成的结构
Lower dimensional $S^1$-invariant Kähler-Einstein metrics via integrable structures
论文作者
论文摘要
我们专注于Kähler-Einstein歧管分类的经典开放问题,可以将Kähler浸入具有Fubini-Study Metric的复杂的投射空间中。特别是,我们将在Kähler-Einstein指标的特殊情况下处理此类问题,以承认旋转类型的对称性。这导致某些可集成的分布允许对此类指标进行分类。
We focus on the classical open problem of the classification of Kähler-Einstein manifolds that can be Kähler immersed into a complex projective space endowed with the Fubini-Study metric. In particular, we will deal with such problem in the special case of Kähler- Einstein metrics admitting symmetries of rotational type. This leads to certain integrable distributions allowing a classification of such metrics.