论文标题
ETMA:高效变压器的多模式假新闻检测的多层次注意框架
ETMA: Efficient Transformer Based Multilevel Attention framework for Multimodal Fake News Detection
论文作者
论文摘要
在这个新的数字时代,社交媒体对人们的生活产生了严重影响。最近,社交媒体上的虚假新闻内容已成为社会上主要具有挑战性的问题之一。被制成和虚假新闻文章的传播包括文本和图像形式的多模式数据。先前的方法主要集中于单峰分析。此外,对于多模式分析,研究人员无法保持与每种模式相对应的独特特征。本文旨在通过提出有效的基于变压器的多层次注意(ETMA)框架来克服这些局限性,用于多模式假新闻检测,其中包括以下组成部分:基于视觉注意的编码器,基于文本注意力的编码器和基于联合注意力的学习。每个组件都使用不同形式的注意机制,并独特处理多模式数据来检测欺诈内容。通过在四个现实世界中的虚假新闻数据集上进行多个实验来验证所提出的网络的功效:Twitter,Jruvika Fake News DataSet,Pontes Fake News DataSet和Risdal Fake News Dataset使用多个评估指标。结果表明,所提出的方法的表现优于所有四个数据集上的基线方法。此外,模型的计算时间也低于最新方法。
In this new digital era, social media has created a severe impact on the lives of people. In recent times, fake news content on social media has become one of the major challenging problems for society. The dissemination of fabricated and false news articles includes multimodal data in the form of text and images. The previous methods have mainly focused on unimodal analysis. Moreover, for multimodal analysis, researchers fail to keep the unique characteristics corresponding to each modality. This paper aims to overcome these limitations by proposing an Efficient Transformer based Multilevel Attention (ETMA) framework for multimodal fake news detection, which comprises the following components: visual attention-based encoder, textual attention-based encoder, and joint attention-based learning. Each component utilizes the different forms of attention mechanism and uniquely deals with multimodal data to detect fraudulent content. The efficacy of the proposed network is validated by conducting several experiments on four real-world fake news datasets: Twitter, Jruvika Fake News Dataset, Pontes Fake News Dataset, and Risdal Fake News Dataset using multiple evaluation metrics. The results show that the proposed method outperforms the baseline methods on all four datasets. Further, the computation time of the model is also lower than the state-of-the-art methods.