论文标题
部分可观测时空混沌系统的无模型预测
Physics Informed Neural Fields for Smoke Reconstruction with Sparse Data
论文作者
论文摘要
由于基础物理学的复杂性以及捕获中的复杂遮挡和照明,从稀疏多视频RGB视频中对流体的高保真重建仍然是一个巨大的挑战。现有的解决方案要么假设障碍和照明知识,要么仅关注没有障碍物或复杂照明的简单流体场景,因此不适合具有未知照明或任意障碍的现实场景。我们提出了第一种通过从稀疏视频的端到端优化中利用管理物理(即Navier -Stokes方程)来重建动态流体的第一种方法,而无需采取照明条件,几何信息或边界条件作为输入。我们使用神经网络作为流体的密度和速度解决方案函数以及静态对象的辐射场函数提供连续的时空场景表示。通过将静态和动态含量分开的混合体系结构,与静态障碍物的流体相互作用首次重建,而没有其他几何输入或人类标记。通过使用物理知识的深度学习来增强随时间变化的神经辐射场,我们的方法受益于对图像和物理先验的监督。为了从稀疏视图中实现强大的优化,我们引入了逐层增长策略,以逐步提高网络容量。使用具有新的正则化项的逐步增长的模型,我们设法在不拟合的情况下将辐射场中的密度颜色模棱两可。在避免了次优速度之前,将预处理的密度到速度流体模型借用了,该数据低估了涡度,但在微不足道地实现了物理方程。我们的方法在一组代表性的合成和真实流动捕获方面表现出具有放松的约束和强烈柔韧性的高质量结果。
High-fidelity reconstruction of fluids from sparse multiview RGB videos remains a formidable challenge due to the complexity of the underlying physics as well as complex occlusion and lighting in captures. Existing solutions either assume knowledge of obstacles and lighting, or only focus on simple fluid scenes without obstacles or complex lighting, and thus are unsuitable for real-world scenes with unknown lighting or arbitrary obstacles. We present the first method to reconstruct dynamic fluid by leveraging the governing physics (ie, Navier -Stokes equations) in an end-to-end optimization from sparse videos without taking lighting conditions, geometry information, or boundary conditions as input. We provide a continuous spatio-temporal scene representation using neural networks as the ansatz of density and velocity solution functions for fluids as well as the radiance field for static objects. With a hybrid architecture that separates static and dynamic contents, fluid interactions with static obstacles are reconstructed for the first time without additional geometry input or human labeling. By augmenting time-varying neural radiance fields with physics-informed deep learning, our method benefits from the supervision of images and physical priors. To achieve robust optimization from sparse views, we introduced a layer-by-layer growing strategy to progressively increase the network capacity. Using progressively growing models with a new regularization term, we manage to disentangle density-color ambiguity in radiance fields without overfitting. A pretrained density-to-velocity fluid model is leveraged in addition as the data prior to avoid suboptimal velocity which underestimates vorticity but trivially fulfills physical equations. Our method exhibits high-quality results with relaxed constraints and strong flexibility on a representative set of synthetic and real flow captures.