论文标题
竞技场基础:在高度动态环境中用于避免障碍物方法的基准测试套件
Arena-Bench: A Benchmarking Suite for Obstacle Avoidance Approaches in Highly Dynamic Environments
论文作者
论文摘要
对于移动机器人来说,自动驾驶安全性的能力,尤其是在动态环境中的能力至关重要。近年来,DRL方法在避免动态障碍物方面表现出了出色的表现。但是,这些基于学习的方法通常是在专门设计的仿真环境中开发的,并且很难针对传统的计划方法进行测试。此外,这些方法将这些方法的集成和部署到真正的机器人平台中尚未完全解决。在本文中,我们介绍了Arena-Bench,这是一个基准套件,可在3D环境中在不同机器人平台上训练,测试和评估导航计划者。它提供了设计和生成高度动态评估世界,场景和自动导航任务的工具,并已完全集成到机器人操作系统中。为了展示我们套件的功能,我们在平台上培训了DRL代理,并将其与各种相关指标上的各种现有基于不同的模型和基于学习的导航方法进行了比较。最后,我们将方法部署到了真实的机器人方面,并证明了结果的可重复性。该代码可在github.com/ignc-research/arena-bench上公开获得。
The ability to autonomously navigate safely, especially within dynamic environments, is paramount for mobile robotics. In recent years, DRL approaches have shown superior performance in dynamic obstacle avoidance. However, these learning-based approaches are often developed in specially designed simulation environments and are hard to test against conventional planning approaches. Furthermore, the integration and deployment of these approaches into real robotic platforms are not yet completely solved. In this paper, we present Arena-bench, a benchmark suite to train, test, and evaluate navigation planners on different robotic platforms within 3D environments. It provides tools to design and generate highly dynamic evaluation worlds, scenarios, and tasks for autonomous navigation and is fully integrated into the robot operating system. To demonstrate the functionalities of our suite, we trained a DRL agent on our platform and compared it against a variety of existing different model-based and learning-based navigation approaches on a variety of relevant metrics. Finally, we deployed the approaches towards real robots and demonstrated the reproducibility of the results. The code is publicly available at github.com/ignc-research/arena-bench.