论文标题
摩尔磁铁和拓扑结构的理论:扭曲双层CRI3的应用
Theory of Moire Magnets and Topological Magnons: Applications to Twisted Bilayer CrI3
论文作者
论文摘要
我们发展了扭曲的双层磁性理论。从二维蜂窝磁铁CRI3的第一原理计算开始,我们构建了代表一类巨大的扭曲双层磁系统的通用自旋模型。使用蒙特卡洛法,我们发现了多种非连续性磁性顺序和拓扑元音,这些磁性和拓扑结构在先前的理论和实验研究中被忽略了。作为扭角的函数,共线磁性阶将相变到非连续性阶和磁性域相。在磁性域相中,我们发现即使在没有dzyaloshinskii-moriya相互作用的情况下,在空间变化的层间耦合也会产生磁空。此外,我们通过构建Moire Magnet的场理论模型来描述磁相跃迁的关键现象。我们的连续体模型很好地解释了在数值模拟中观察到的相变的性质。最后,我们对木元激发的拓扑特性进行了分类。每个阶段中的镁质的特征是具有不同物理起源的不同质量间隙。在共线铁磁序中,高阶拓扑磁性绝缘子相发生。它是Magnonic系统中高阶拓扑阶段的独特示例,因为它不需要相互作用的非共线阶或不对称形式。在磁性域相中,磁杆沿域壁定位并形成一维拓扑边缘模式。随着封闭的域壁变形为开放网络,限制的边缘模式延伸以形成拓扑元号的网络模型。
We develop a comprehensive theory of twisted bilayer magnetism. Starting from the first-principles calculations of two-dimensional honeycomb magnet CrI3, we construct the generic spin models that represent a broad class of twisted bilayer magnetic systems. Using Monte-Carlo method, we discover a variety of non-collinear magnetic orders and topological magnons that have been overlooked in the previous theoretical and experimental studies. As a function of the twist angle, the collinear magnetic order undergoes the phase transitions to the non-collinear order and the magnetic domain phase. In the magnetic domain phase, we find that the spatially varying interlayer coupling produces the magnetic skyrmions even in the absence of the Dzyaloshinskii-Moriya interactions. In addition, we describe the critical phenomena of the magnetic phase transitions by constructing the field theoretical model of the moire magnet. Our continuum model well-explains the nature of the phase transitions observed in the numerical simulations. Finally, we classify the topological properties of the magnon excitations. The magnons in each phases are characterized by the distinct mass gaps with different physical origins. In the collinear ferromagnetic order, the higher-order topological magnonic insulator phase occurs. It serves as a unique example of the higher-order topological phase in magnonic system, since it does not require non-collinear order or asymmetric form of the interactions. In the magnetic domain phases, the magnons are localized along the domain wall and form one-dimensional topological edge mode. As the closed domain walls deform to a open network, the confined edge mode extends to form a network model of the topological magnons.