论文标题

派生的不变和动机,第一部分,整体Grothendieck Riemann-Roch和非交通动机

Derived invariants and motives, Part I, Integral Grothendieck Riemann-Roch and non-commutative motives

论文作者

Matsumoto, Keiho

论文摘要

这一系列论文的目的是针对诸如Joshi-Rajan的猜想以及Serre的猜想的概括等减少密度的问题提供新的非交通方法。在本文中,我们证明了整体的Grothendieck Riemann-Roch,在CH $(k)= 0 $的情况下,Papas证明了Papas。作为推论,我们证明了Kontsevich比较定理的整体类似物,并且我们表明,如果光滑的投射品种$ x $具有完整的特殊收藏,那么就有一个明确的$ x $ to to to Bounded Torsion的动机的公式。

The goal of this series of papers is to give a new non-commutative approach to problems about the density of reductions such as the conjecture of Joshi-Rajan, and the generalization of the conjecture of Serre. In this paper, we prove integral Grothendieck Riemann-Roch which was proved by Papas in the case ch$(k)=0$. As a corollary we prove an integral analogue of Kontsevich's comparison theorem, and we show that if a smooth projective variety $X$ has a full exceptional collection then there is an explicit formula of the motive of $X$ up to bounded torsion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源