论文标题

网络上的非线性扩散:扰动和共识动态

Nonlinear Diffusion on Networks: Perturbations and Consensus Dynamics

论文作者

Bonetto, Riccardo, Kojakhmetov, Hildeberto Jardón

论文摘要

在本文中,我们研究了代表网络非线性扩散的一类方程。我们的模型的特定实例可以看作是多孔 - 中等方程的网络。我们有兴趣研究这种系统的扰动并描述共识动态。方程的非线性产生了可能与共识空间相交并产生奇异性的潜在复杂的平衡结构。对于不受干扰的情况,我们通过利用非线性矢量场的组转换下的对称性来表征平衡的集合。在小扰动下,我们获得了一个缓慢的系统。因此,我们分析了共识空间上奇异性附近的缓慢快速动力学。在此阶段进行了分析以进行完整的网络,从而详细描述了系统。我们提供了在单数点处的平衡分支的线性近似;结果,我们表明,通常,共识空间上的奇异性证明是跨批判性的。我们在本地假设下证明了牛排解决方案的存在。对于通用的图形结构,假设对扰动的条件更严格,我们证明了最大牛排的存在,这与共识子空间一致。此外,我们通过数值模拟验证我们的主要理论的主要发现,将研究扩展到不完整的图。此外,我们展示了与大麻的稳定性延迟损失如何诱导瞬时时空模式。

In this paper, we study a class of equations representing nonlinear diffusion on networks. A particular instance of our model can be seen as a network equivalent of the porous-medium equation. We are interested in studying perturbations of such a system and describing the consensus dynamics. The nonlinearity of the equations gives rise to potentially intricate structures of equilibria that can intersect the consensus space, creating singularities. For the unperturbed case, we characterise the sets of equilibria by exploiting the symmetries under group transformations of the nonlinear vector field. Under small perturbations, we obtain a slow-fast system. Thus, we analyse the slow-fast dynamics near the singularities on the consensus space. The analysis at this stage is carried out for complete networks, allowing a detailed characterisation of the system. We provide a linear approximation of the intersecting branches of equilibria at the singular points; as a consequence, we show that, generically, the singularities on the consensus space turn out to be transcritical. We prove under local assumptions the existence of canard solutions. For generic graph structures, assuming more strict conditions on the perturbation, we prove the existence of a maximal canard, which coincides with the consensus subspace. In addition, we validate by numerical simulations the principal findings of our main theory, extending the study to non-complete graphs. Moreover, we show how the delayed loss of stability associated to the canards induces transient spatio-temporal patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源