论文标题
SIRS流行模型中的最佳疫苗接种
Optimal Vaccination in a SIRS Epidemic Model
论文作者
论文摘要
我们提出并解决了SIRS类型确定性隔室模型中的最佳疫苗接种问题:免疫种群可以再次易感,例如,由于疫苗的免疫能力不完全。因此,社会计划者旨在通过疫苗接种运动减少易感人群的数量,同时最大程度地减少与传染病有关的社会和经济成本。作为理论上的贡献,我们提供了技术非平滑验证定理,确保对汉密尔顿 - 雅各布利 - 贝尔曼方程的半循环粘度解决方案可以通过最小的成本函数识别,但前提是闭环方程可容纳解决方案。然后,通过从\ emph {常规拉格朗日流}的理论借用结果来得出闭环方程的条件。从应用的角度来看,我们在案例研究中提供了模型的数值实现,并具有二次瞬时成本。在其他结论中,我们观察到,从长期来看,最佳疫苗接种政策能够将感染百分比保持在零,至少在自然繁殖数量和再感染率很小时。
We propose and solve an optimal vaccination problem within a deterministic compartmental model of SIRS type: the immunized population can become susceptible again, e.g.\ because of a not complete immunization power of the vaccine. A social planner thus aims at reducing the number of susceptible individuals via a vaccination campaign, while minimizing the social and economic costs related to the infectious disease. As a theoretical contribution, we provide a technical non-smooth verification theorem, guaranteeing that a semiconcave viscosity solution to the Hamilton-Jacobi-Bellman equation identifies with the minimal cost function, provided that the closed-loop equation admits a solution. Conditions under which the closed-loop equation is well-posed are then derived by borrowing results from the theory of \emph{Regular Lagrangian Flows}. From the applied point of view, we provide a numerical implementation of the model in a case study with quadratic instantaneous costs. Amongst other conclusions, we observe that in the long-run the optimal vaccination policy is able to keep the percentage of infected to zero, at least when the natural reproduction number and the reinfection rate are small.