论文标题

GAIA DR3的随机森林分类白矮人序列光谱:可行性研究

Random Forest classification of Gaia DR3 white dwarf-main sequence spectra: a feasibility study

论文作者

Echeverry, David, Torres, Santiago, Rebassa-Mansergas, Alberto, Ferrer-Burjachs, Aina

论文摘要

第三个Gaia数据发布为约2亿源提供了低分辨率的光谱。预计它们中的很大一部分包含一个白色矮人(WD),即隔离,或在具有主要序列(MS)伴侣的二进制系统中,即白矮人序列(WDMS)二进制。利用WDS分类中使用的合并随机森林算法,我们将其扩展到研究Gaia WDMS二元光谱的可行性。首先,通过将单个WD和MS光谱组合在各种有效温度和表面重力的范围内,对随机森林算法进行训练。此外,借助详细的人口综合代码,我们为上述人群模拟了GAIA光谱。为了评估模型的性能,将一组指标应用于我们的分类。我们的结果表明,对于以高于300的分类能力,分类的准确性仅取决于光谱的SNR,而在该值以下的SNR之下应增加SNR,因为分辨能力降低以保持一定的准确性。然后将算法应用于已经分类的SDSS WDMS目录,表明自动分类表现出与以前的分类方法的准确性(甚至更高)。最后,我们模拟{\ it gaia}光谱,表明我们的算法能够正确地对近80%的合成WDMS频谱进行分类。我们的算法代表了实际GAIA WDMS光谱分析和分类的有用工具。即使对于由MS恒星通量支配的那些光谱,该算法也达到了高度的精度(60%)。

The third Gaia data release provides low-resolution spectra for around 200 million sources. It is expected that a sizeable fraction of them contain a white dwarf (WD), either isolated, or in a binary system with a main-sequence (MS) companion, i.e. a white dwarf-main sequence (WDMS) binary. Taking advantage of a consolidated Random Forest algorithm used in the classification of WDs, we extend it to study the feasibility of classifying Gaia WDMS binary spectra. The Random Forest algorithm is first trained with a set of synthetic spectra generated by combining individual WD and MS spectra for the full range of effective temperatures and surface gravities. Moreover, with the aid of a detailed population synthesis code, we simulate the Gaia spectra for the above mentioned populations. For evaluating the performance of the models, a set of metrics are applied to our classifications. Our results show that for resolving powers above ~300 the accuracy of the classification depends exclusively on the SNR of the spectra, while below that value the SNR should be increased as the resolving power is reduced to maintain a certain accuracy. The algorithm is then applied to the already classified SDSS WDMS catalogue, revealing that the automated classification exhibits an accuracy comparable (or even higher) to previous classification methods. Finally, we simulate the {\it Gaia} spectra, showing that our algorithm is able to correctly classify nearly 80% the synthetic WDMS spectra. Our algorithm represents a useful tool in the analysis and classification of real Gaia WDMS spectra. Even for those spectra dominated by the flux of the MS stars, the algorithm reaches a high degree of accuracy (60%).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源