论文标题

带有子系统对称性的玻色子弗屈服二元性

Boson-fermion duality with subsystem symmetry

论文作者

Cao, Weiguang, Yamazaki, Masahito, Zheng, Yunqin

论文摘要

我们探索了$(2+1)$ d的确切双重性,这是在具有$ \ mathbb {z} _2 $子系统对称性的波斯型理论的费米化和带有$ \ mathbb {z} _2 $ Subsystem SupSystem Fermion fermion parity Parity Symettry Symmetry的Fermionic Themore之间。一个典型的例子是Plaquette Ising模型的费米化与Plaquette Fermion模型之间的二元性。我们首先在$(1+1)$ d中重新访问标准玻色子 - 弗米恩二元性,并使用$ \ mathbb {z} _2 $ 0- $ 0-FROM对称性,以可推广到$(2+1)$ d的方式表示。我们使用$ \ Mathbb {z} _2 $子系统对称性进行$(2+1)$ D,并通过使用广义的Jordan-Wigner地图在晶格上建立确切的双重性,并仔细讨论了扭曲和对称扇区的映射。这促使我们引入了表现出叶面结构的子系统ARF不变性。

We explore an exact duality in $(2+1)$d between the fermionization of a bosonic theory with a $\mathbb{Z}_2$ subsystem symmetry and a fermionic theory with a $\mathbb{Z}_2$ subsystem fermion parity symmetry. A typical example is the duality between the fermionization of the plaquette Ising model and the plaquette fermion model. We first revisit the standard boson-fermion duality in $(1+1)$d with a $\mathbb{Z}_2$ 0-from symmetry, presenting in a way generalizable to $(2+1)$d. We proceed to $(2+1)$d with a $\mathbb{Z}_2$ subsystem symmetry and establish the exact duality on the lattice by using the generalized Jordan-Wigner map, with a careful discussion on the mapping of the twist and symmetry sectors. This motivates us to introduce the subsystem Arf invariant, which exhibits a foliation structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源