论文标题

Ablowitz--Ladik系统的连续限制

Continuum limit for the Ablowitz--Ladik system

论文作者

Killip, Rowan, Ouyang, Zhimeng, Visan, Monica, Wu, Lei

论文摘要

我们表明,Ablowitz--Ladik系统的解决方案将仅$ l^2 $初始数据收敛到立方非线性schrödinger方程的解决方案。此外,我们考虑了该晶格模型的初始数据,该晶格模型激发了离散分散关系的两个临界点附近的傅立叶模式,并证明了与非线性Schrödinger方程的脱钩系统的收敛。

We show that solutions to the Ablowitz--Ladik system converge to solutions of the cubic nonlinear Schrödinger equation for merely $L^2$ initial data. Furthermore, we consider initial data for this lattice model that excites Fourier modes near both critical points of the discrete dispersion relation and demonstrate convergence to a decoupled system of nonlinear Schrödinger equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源