论文标题

单级歧管

Monoidally graded manifolds

论文作者

Jiang, Shuhan

论文摘要

我们将$ \ mathbb {z} _2 $分类的歧管的理论概括为$ \ mathcal {i} $ - 分级流形的理论,其中$ \ mathcal {i} $是一个交换性的半环。我们在此广义设置中证明了Batchelor的定理。据我们所知,除某些特殊情况外,这种证据仍然缺失。

We give a generalization of the theory of $\mathbb{Z}_2$-graded manifolds to a theory of $\mathcal{I}$-graded manifolds, where $\mathcal{I}$ is a commutative semi-ring with some additional properties. We prove Batchelor's theorem in this generalized setting. To our knowledge, such a proof is still missing except for some special cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源