论文标题

基于区块链的联合学习的资源优化在移动边缘计算中

Resource Optimization for Blockchain-based Federated Learning in Mobile Edge Computing

论文作者

Wang, Zhilin, Hu, Qin, Xiong, Zehui

论文摘要

随着移动边缘计算(MEC)和基于区块链的联合学习(BCFL)的开发,许多研究表明将BCFL部署在边缘服务器上。在这种情况下,资源有限的边缘服务器需要为其卸载任务提供两个移动设备,以及以经济高效的方式进行模型培训和区块链共识的BCFL系统,而无需牺牲任何方面的服务质量。为了应对这一挑战,本文提出了针对边缘服务器的资源分配方案,旨在为最低成本提供最佳服务。具体来说,我们首先分析了MEC和BCFL任务消耗的能量,然后将每个任务的完成时间作为服务质量限制。然后,我们将资源分配挑战建模为多元,多构造和凸优化问题。为了以渐进的方式解决该问题,我们根据具有相等和按需资源分布策略的均质和异质情况下的乘数(ADMM)的交替方向方法(ADMM)设计两种算法。我们提出的算法的有效性通过严格的理论分析证明。通过广泛的实验,评估了我们提出的资源分配方案的收敛性和效率。据我们所知,这是第一项研究MEC中BCFL的Edge服务器资源分配困境的第一项工作。

With the development of mobile edge computing (MEC) and blockchain-based federated learning (BCFL), a number of studies suggest deploying BCFL on edge servers. In this case, resource-limited edge servers need to serve both mobile devices for their offloading tasks and the BCFL system for model training and blockchain consensus in a cost-efficient manner without sacrificing the service quality to any side. To address this challenge, this paper proposes a resource allocation scheme for edge servers, aiming to provide the optimal services with the minimum cost. Specifically, we first analyze the energy consumed by the MEC and BCFL tasks, and then use the completion time of each task as the service quality constraint. Then, we model the resource allocation challenge into a multivariate, multi-constraint, and convex optimization problem. To solve the problem in a progressive manner, we design two algorithms based on the alternating direction method of multipliers (ADMM) in both the homogeneous and heterogeneous situations with equal and on-demand resource distribution strategies, respectively. The validity of our proposed algorithms is proved via rigorous theoretical analysis. Through extensive experiments, the convergence and efficiency of our proposed resource allocation schemes are evaluated. To the best of our knowledge, this is the first work to investigate the resource allocation dilemma of edge servers for BCFL in MEC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源