论文标题

通过多面量化加强学习二进制的图表表示,用于TOP-K建议

Learning Binarized Graph Representations with Multi-faceted Quantization Reinforcement for Top-K Recommendation

论文作者

Chen, Yankai, Guo, Huifeng, Zhang, Yingxue, Ma, Chen, Tang, Ruiming, Li, Jingjie, King, Irwin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Learning vectorized embeddings is at the core of various recommender systems for user-item matching. To perform efficient online inference, representation quantization, aiming to embed the latent features by a compact sequence of discrete numbers, recently shows the promising potentiality in optimizing both memory and computation overheads. However, existing work merely focuses on numerical quantization whilst ignoring the concomitant information loss issue, which, consequently, leads to conspicuous performance degradation. In this paper, we propose a novel quantization framework to learn Binarized Graph Representations for Top-K Recommendation (BiGeaR). BiGeaR introduces multi-faceted quantization reinforcement at the pre-, mid-, and post-stage of binarized representation learning, which substantially retains the representation informativeness against embedding binarization. In addition to saving the memory footprint, BiGeaR further develops solid online inference acceleration with bitwise operations, providing alternative flexibility for the realistic deployment. The empirical results over five large real-world benchmarks show that BiGeaR achieves about 22%~40% performance improvement over the state-of-the-art quantization-based recommender system, and recovers about 95%~102% of the performance capability of the best full-precision counterpart with over 8x time and space reduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源