论文标题
CF-YOLO:交叉融合YOLO在不利天气中使用高质量的真实雪数据集的对象检测
CF-YOLO: Cross Fusion YOLO for Object Detection in Adverse Weather with a High-quality Real Snow Dataset
论文作者
论文摘要
降雪是对物体检测(OD)最艰难的不利天气条件之一。目前,不仅缺乏训练尖端检测器的积雪OD数据集,而且这些探测器也很难学习潜在信息对雪中检测有益的。为了减轻上述两个问题,我们首先建立了一个名为RSOD的现实世界中的OD数据集。此外,我们开发了一种无监督的训练策略,具有独特的激活功能,称为$ peac \ act $,以定量评估雪对每个物体的影响。 Peak ACT有助于将RSOD中的图像分为四不良级别。据我们所知,RSOD是第一个定量评估和分级的Snowy OD数据集。然后,我们提出了一个新颖的交叉融合(CF)块来构建基于Yolov5s(呼叫CF-Yolo)的轻量级OD网络。 CF是一种插件功能聚合模块,它以更简单而灵活的形式集成了特征金字塔网络和路径聚合网络的优势。 RSOD和CF都使我们的CF-Yolo具有现实世界中OD的优化能力。也就是说,CF-YOLO可以处理模糊性,失真和雪的不利发现问题。实验表明,与SOTA相比,我们的CF-Yolo在RSOD上取得了更好的检测结果。代码和数据集可在https://github.com/qqding77/cf-yolo-and-rsod上获得。
Snow is one of the toughest adverse weather conditions for object detection (OD). Currently, not only there is a lack of snowy OD datasets to train cutting-edge detectors, but also these detectors have difficulties learning latent information beneficial for detection in snow. To alleviate the two above problems, we first establish a real-world snowy OD dataset, named RSOD. Besides, we develop an unsupervised training strategy with a distinctive activation function, called $Peak \ Act$, to quantitatively evaluate the effect of snow on each object. Peak Act helps grading the images in RSOD into four-difficulty levels. To our knowledge, RSOD is the first quantitatively evaluated and graded snowy OD dataset. Then, we propose a novel Cross Fusion (CF) block to construct a lightweight OD network based on YOLOv5s (call CF-YOLO). CF is a plug-and-play feature aggregation module, which integrates the advantages of Feature Pyramid Network and Path Aggregation Network in a simpler yet more flexible form. Both RSOD and CF lead our CF-YOLO to possess an optimization ability for OD in real-world snow. That is, CF-YOLO can handle unfavorable detection problems of vagueness, distortion and covering of snow. Experiments show that our CF-YOLO achieves better detection results on RSOD, compared to SOTAs. The code and dataset are available at https://github.com/qqding77/CF-YOLO-and-RSOD.