论文标题

叶丘陵上的叶羚羊群:在任意弯曲的表面上蜂拥而至

Wildebeest Herds on Rolling Hills: Flocking on Arbitrary Curved Surfaces

论文作者

Hueschen, Christina L., Dunn, Alexander R., Phillips, Rob

论文摘要

活性剂的集体行为,无论是分子电动机推动的牛肉牛群还是微观肌动蛋白丝,都是生物和软物质物理学的令人兴奋的边界。大约三十年前,Toner和Tu对羊群或牛群的集体行动进行了连续理论,该理论有助于推动现代的活跃物质领域。将连续活性物质理论应用于生活现象时面临的挑战是生物环境的复杂几何结构。宏观和显微镜牛群都在不对称的弯曲表面上移动,例如起伏的草平原或细胞或胚胎的表面层,这可以在分析上使问题在分析上棘手。在这项工作中,我们提出了一种碳酸-TU羊群理论的公式,该理论使用有限元方法来求解任意弯曲表面上的管理方程。首先,我们测试了开发的形式主义及其在通道流中的数值实现,并在散射障碍物以及圆柱和球形表面上进行了比较,将我们的结果与分析溶液进行了比较。然后,我们发展到任意曲率的表面,超越了以前可访问的问题,以探索各种景观的放牧行为。我们的方法允许研究分析方法未揭示的瞬态和动态解决方案。它还可以使新几何条件和边界条件以及参数空间的有效扫描的多功能结合。展望未来,这里介绍的工作为碳粉理论与有关生物学上与生物学相关的几何形状的集体运动的对话之间的对话奠定了基础,从迁移动物牛群的无人机镜头到细胞内的微观细胞骨骼流的电影。

The collective behavior of active agents, whether herds of wildebeest or microscopic actin filaments propelled by molecular motors, is an exciting frontier in biological and soft matter physics. Almost three decades ago, Toner and Tu developed a continuum theory of the collective action of flocks, or herds, that helped launch the modern field of active matter. One challenge faced when applying continuum active matter theories to living phenomena is the complex geometric structure of biological environments. Both macroscopic and microscopic herds move on asymmetric curved surfaces, like undulating grass plains or the surface layers of cells or embryos, which can render problems analytically intractable. In this work, we present a formulation of the Toner-Tu flocking theory that uses the finite element method to solve the governing equations on arbitrary curved surfaces. First, we test the developed formalism and its numerical implementation in channel flow with scattering obstacles and on cylindrical and spherical surfaces, comparing our results to analytical solutions. We then progress to surfaces with arbitrary curvature, moving beyond previously accessible problems to explore herding behavior on a variety of landscapes. Our approach allows the investigation of transients and dynamic solutions not revealed by analytic methods. It also enables versatile incorporation of new geometries and boundary conditions and efficient sweeps of parameter space. Looking forward, the work presented here lays the groundwork for a dialogue between Toner-Tu theory and data on collective motion in biologically-relevant geometries, from drone footage of migrating animal herds to movies of microscopic cytoskeletal flows within cells.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源