论文标题

比较复杂网络中免疫力减弱的流行过程的理论方法

Comparison of theoretical approaches for epidemic processes with waning immunity in complex networks

论文作者

Silva, José Carlos M., Silva, Diogo H., Rodrigues, Francisco A., Ferreira, Silvio C.

论文摘要

在网络基本流行模型中,免疫力在网络上的衰落作用被低估了,同时对真实流行病暴发的基本意义。一个核心问题是描述流行动力学时,哪种平均场方法更准确。考虑到网络上的易感感染反射感染(SIRS)流行模型,我们解决了这个问题。将两种基于复发性动态消息通话(RDMP)的成对均值场理论,另一种基于对配对的平均场理论(PQMF)的两种理论,与在不同水平异质性的大网络上进行了广泛的随机模拟。对于降低的免疫力时间比恢复时间长或可比性,RDMP在具有度分布$ p(k)\ sim k^{ - γ} $的幂律网络上的PQMF理论优于PQMF理论。特别是,对于$γ> 3 $,在模拟中观察到的流行阈值是有限的,与RDMP的定性一致,而PQMF导致渐近无效的阈值。在PQMF理论的情况下,$γ> 3 $的关键流行病患病率定位在有限的顶点中。相比之下,本地化发生在RDMP理论中网络的宽大部分。但是,模拟表明,实际流行病的定位模式在两个均值场理论之间,并且改进的理论方法对于理解SIRS动力学是必要的。

The role of waning immunity in basic epidemic models on networks has been undervalued while being noticeable fundamental for real epidemic outbreaks. One central question is which mean-field approach is more accurate in describing the epidemic dynamics. We tackled this problem considering the susceptible-infected-recovered-susceptible (SIRS) epidemic model on networks. Two pairwise mean-field theories, one based on recurrent dynamical message-passing (rDMP) and the other on the pair quenched mean-field theory (PQMF), are compared with extensive stochastic simulations on large networks of different levels of heterogeneity. For waning immunity times longer than or comparable with the recovering time, rDMP outperforms PQMF theory on power-law networks with degree distribution $P(k) \sim k^{-γ}$. In particular, for $γ> 3$, the epidemic threshold observed in simulations is finite, in qualitative agreement with rDMP, while PQMF leads to an asymptotically null threshold. The critical epidemic prevalence for $γ> 3$ is localized in a finite set of vertices in the case of the PQMF theory. In contrast, the localization happens in a subextensive fraction of the network in rDMP theory. Simulations, however, indicate that localization patterns of the actual epidemic lay between the two mean-field theories, and improved theoretical approaches are necessary to understanding the SIRS dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源