论文标题
CAFA:测试时间适应的班级感知功能对齐
CAFA: Class-Aware Feature Alignment for Test-Time Adaptation
论文作者
论文摘要
尽管最新的深度学习进展,当应用于与培训数据不同的新数据时,深层神经网络仍会遭受性能降低的影响。测试时间适应(TTA)旨在通过在测试时间调整模型来解决未标记的数据,以应对这一挑战。可以将TTA应用于预审计的网络,而无需修改其训练程序,从而使它们能够利用形成良好的源分布进行适应。一种可能的方法是将测试样品的表示空间与源分布(\ textit {i.e。,}特征对齐)保持一致。但是,在TTA中执行特征对准特别具有挑战性,因为在适应过程中,访问标记的源数据受到限制。也就是说,模型没有机会以类歧视的方式学习测试数据,这在其他适应任务(\ textIt {e.g。,}无监督的域适应性)中是可行的。基于此观察结果,我们提出了一种简单而有效的特征对齐损失,称为班级感知特征对齐(CAFA),同时1)鼓励模型以类别歧视的方式学习目标表示形式,并且2)有效地减轻测试时间的分布变化。我们的方法不需要任何超参数或其他损失,这是先前方法所需的。我们在6个不同的数据集上进行了广泛的实验,并显示我们提出的方法始终优于现有基准。
Despite recent advancements in deep learning, deep neural networks continue to suffer from performance degradation when applied to new data that differs from training data. Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time. TTA can be applied to pretrained networks without modifying their training procedures, enabling them to utilize a well-formed source distribution for adaptation. One possible approach is to align the representation space of test samples to the source distribution (\textit{i.e.,} feature alignment). However, performing feature alignment in TTA is especially challenging in that access to labeled source data is restricted during adaptation. That is, a model does not have a chance to learn test data in a class-discriminative manner, which was feasible in other adaptation tasks (\textit{e.g.,} unsupervised domain adaptation) via supervised losses on the source data. Based on this observation, we propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously 1) encourages a model to learn target representations in a class-discriminative manner and 2) effectively mitigates the distribution shifts at test time. Our method does not require any hyper-parameters or additional losses, which are required in previous approaches. We conduct extensive experiments on 6 different datasets and show our proposed method consistently outperforms existing baselines.