论文标题

通过评分规则最小化对生成神经网络的可能性无可能推断

Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization

论文作者

Pacchiardi, Lorenzo, Dutta, Ritabrata

论文摘要

贝叶斯无可能的推理方法产生了具有棘手可能性的模拟器模型后近似值。最近,许多作品训练有训练的神经网络,以近似于棘手的可能性或直接后部。大多数建议都使用归一化流,即神经网络参数化可逆地图,用于从基础尺寸转换样品。然后,可以访问转换样品的概率密度,并可以通过最大似然对模拟参数观察对来训练归一化流。最近的一项工作[Ramesh等,2022]近似具有生成网络的后验,该网络删除了可逆性要求,因此是更灵活的分布类别缩放到高维和结构化数据。但是,生成网络仅允许从参数化分布进行采样。因此,Ramesh等人。 [2022]遵循对抗性训练的常见解决方案,在这种训练中,生成网络对“评论家”网络进行了Min-Max游戏。该过程不稳定,可能导致学习的分布低估了不确定性 - 在极端情况下,单个点崩溃。在这里,我们建议通过通过评分规则最小化训练的生成网络近似后验,这是一种被忽视的无对抗性方法,可以平滑训练和更好的不确定性定量。在模拟研究中,评分规则方法在对抗框架方面较短的训练时间可产生更好的性能。

Bayesian Likelihood-Free Inference methods yield posterior approximations for simulator models with intractable likelihood. Recently, many works trained neural networks to approximate either the intractable likelihood or the posterior directly. Most proposals use normalizing flows, namely neural networks parametrizing invertible maps used to transform samples from an underlying base measure; the probability density of the transformed samples is then accessible and the normalizing flow can be trained via maximum likelihood on simulated parameter-observation pairs. A recent work [Ramesh et al., 2022] approximated instead the posterior with generative networks, which drop the invertibility requirement and are thus a more flexible class of distributions scaling to high-dimensional and structured data. However, generative networks only allow sampling from the parametrized distribution; for this reason, Ramesh et al. [2022] follows the common solution of adversarial training, where the generative network plays a min-max game against a "critic" network. This procedure is unstable and can lead to a learned distribution underestimating the uncertainty - in extreme cases collapsing to a single point. Here, we propose to approximate the posterior with generative networks trained by Scoring Rule minimization, an overlooked adversarial-free method enabling smooth training and better uncertainty quantification. In simulation studies, the Scoring Rule approach yields better performances with shorter training time with respect to the adversarial framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源