论文标题

用于域移动的预训练网络几乎没有改编

Few-Shot Adaptation of Pre-Trained Networks for Domain Shift

论文作者

Zhang, Wenyu, Shen, Li, Zhang, Wanyue, Foo, Chuan-Sheng

论文摘要

当源(训练)数据和目标(测试)数据之间存在域移动时,深网很容易降级。最近的测试时间适应方法更新了使用流数据中部署在新目标环境中的预训练源模型的批量归一层,以减轻这种性能降级。尽管此类方法可以在不先收集大型目标域数据集的情况下进行调整,但它们的性能取决于流媒体条件,例如迷你批量的大小和类别分布,在实践中可能是无法预测的。在这项工作中,我们提出了一个框架,以适应几个域的适应性,以应对数据有效适应的实际挑战。具体而言,我们在预训练的源模型中提出了对特征归一化统计量的约束优化,该模型由目标域设置的少量支持。我们的方法易于实现,并改善每类用于分类任务的源模型性能的少量。对5个跨域分类和4个语义分割数据集进行了广泛的实验表明,我们的方法比测试时间适应更准确,更可靠,同时不受流媒体条件的限制。

Deep networks are prone to performance degradation when there is a domain shift between the source (training) data and target (test) data. Recent test-time adaptation methods update batch normalization layers of pre-trained source models deployed in new target environments with streaming data to mitigate such performance degradation. Although such methods can adapt on-the-fly without first collecting a large target domain dataset, their performance is dependent on streaming conditions such as mini-batch size and class-distribution, which can be unpredictable in practice. In this work, we propose a framework for few-shot domain adaptation to address the practical challenges of data-efficient adaptation. Specifically, we propose a constrained optimization of feature normalization statistics in pre-trained source models supervised by a small support set from the target domain. Our method is easy to implement and improves source model performance with as few as one sample per class for classification tasks. Extensive experiments on 5 cross-domain classification and 4 semantic segmentation datasets show that our method achieves more accurate and reliable performance than test-time adaptation, while not being constrained by streaming conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源