论文标题

$ g $和$ k_s $ bands的RRAB星的光度法[Fe/h]由深度学习

Photometric [Fe/H] of RRab stars in the $G$ and $K_s$ bands by deep learning

论文作者

Dékány, István, Grebel, Eva K.

论文摘要

RR Lyrae星是有用的化学示踪剂,这要归功于其重元素丰度与光曲线的形状之间的经验关系。但是,缺乏对多个光度波段的这种关系的一致,准确的校准。我们为Gaia Optical $ G $和近红外Vista $ k_s $ wavebands在Gaia Optical $ g $中的基本模式RR Lyrae星的金属估算设计了一种新方法。首先,将现有的金属性预测方法应用于大型光度数据集,然后将其用于训练长期记忆复发的长期记忆复发网络,以将[Fe/H]回归到其他波段中的光曲线。这种方法允许我们准确的,光谱法校准的$ i $ band公式向其他频段传递,而以最小的额外噪声为代价。我们达到了低平均绝对错误$ 0.1 $ DEX和高$ R^2 $回归性能为$ 0.84 $和$ k_s $和$ g $ bands的$ 0.93 $,以交叉验证来衡量。所得的预测模型部署在Gaia DR2和VVV Inner-Bulge RR Lyrae目录上。我们估计内部凸起的$ -1.35 $ dex的平均金属度和光环的$ -1.7 $,其显着少于通过早期光度预测方法获得的值。利用我们的结果,我们建立了超过60,000个银河系RR Lyrae星的光度法金属的公共目录,并提供了由此产生的RR Lyrae金属性分布的全套地图。用于培训和部署我们的经常性神经网络的软件代码在开源域中公开可用。

RR Lyrae stars are useful chemical tracers thanks to the empirical relationship between their heavy-element abundance and the shape of their light curves. However, the consistent and accurate calibration of this relation across multiple photometric wavebands has been lacking. We have devised a new method for the metallicity estimation of fundamental-mode RR Lyrae stars in the Gaia optical $G$ and near-infrared VISTA $K_s$ wavebands by deep learning. First, an existing metallicity prediction method is applied to large photometric data sets, which are then used to train long short-term memory recurrent neural networks for the regression of the [Fe/H] to the light curves in other wavebands. This approach allows an unbiased transfer of our accurate, spectroscopically calibrated $I$-band formula to additional bands at the expense of minimal additional noise. We achieve a low mean absolute error of $0.1$ dex and high $R^2$ regression performance of $0.84$ and $0.93$ for the $K_s$ and $G$ bands, respectively, measured by cross-validation. The resulting predictive models are deployed on the Gaia DR2 and VVV inner-bulge RR Lyrae catalogs. We estimate mean metallicities of $-1.35$ dex for the inner bulge and $-1.7$ for the halo, which are significantly less than values obtained by earlier photometric prediction methods. Using our results, we establish a public catalog of photometric metallicities of over 60,000 Galactic RR Lyrae stars, and provide an all-sky map of the resulting RR Lyrae metallicity distribution. The software code used for training and deploying our recurrent neural networks is made publicly available in the open-source domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源