论文标题

角 - 均匀平行坐标

Angle-Uniform Parallel Coordinates

论文作者

Zhang, Kaiyi, Zhou, Liang, Chen, Lu, He, Shitong, Weiskopf, Daniel, Wang, Yunhai

论文摘要

我们提出了角度均匀的平行坐标,这是一种与数据无关的技术,它变形了平行坐标的图像平面,因此两个变量之间的线性关系的角度沿并行坐标图的水平轴线线性映射。尽管是可视化多维数据的常见方法,但平行坐标却无效地揭示了正相关,因为相关的平行坐标点可能位于图像平面中的无穷大,而对负相关和正相关的不对称编码可能会导致不可靠的估计。为了解决这个问题,我们引入了一种转换,该转换使用角度均匀的映射水平界定,并以结构性的方式垂直缩小它们。多边形线成为平滑的曲线,并实现了数据相关性的对称表示。我们进一步提出了一种组合的子采样和密度可视化方法,以减少由透支引起的视觉混乱。我们的方法可以对数据相关性进行准确的视觉模式解释,并且其独立于数据的性质使其适用于所有多维数据集。使用合成和现实世界数据集的示例证明了我们方法的有用性。

We present angle-uniform parallel coordinates, a data-independent technique that deforms the image plane of parallel coordinates so that the angles of linear relationships between two variables are linearly mapped along the horizontal axis of the parallel coordinates plot. Despite being a common method for visualizing multidimensional data, parallel coordinates are ineffective for revealing positive correlations since the associated parallel coordinates points of such structures may be located at infinity in the image plane and the asymmetric encoding of negative and positive correlations may lead to unreliable estimations. To address this issue, we introduce a transformation that bounds all points horizontally using an angle-uniform mapping and shrinks them vertically in a structure-preserving fashion; polygonal lines become smooth curves and a symmetric representation of data correlations is achieved. We further propose a combined subsampling and density visualization approach to reduce visual clutter caused by overdrawing. Our method enables accurate visual pattern interpretation of data correlations, and its data-independent nature makes it applicable to all multidimensional datasets. The usefulness of our method is demonstrated using examples of synthetic and real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源