论文标题

Bismut-Lott Torsion形式和ETA形式的分析手术和粘合

Analytic surgery and gluing of the Bismut-Lott torsion form and eta form

论文作者

So, Bing Kwan

论文摘要

鉴于具有封闭连接的纤维的纤维束,以及一个分离超曲面的家族,我们研究了在Hassell,Mazzeo和Melrose的意义上,在分析手术下,在分析手术下,Bismut-Lott分析扭转形式的行为和双重性束的ETA形式。我们发现,在手术限制下,重新固定的热核是非奇异的,而bismut-lott分析扭转形式和ETA形式都可以写成作为对数术语的总和,该术语满足Igusa添加性属性,b- bimut-lott lott torsion torsion torsion torsion torsion torsion torsion torsion torsion torsion torsion torsion torce tore the B-eta形式(分别是错误的术语),来自误差术语。因此,我们获得了这些不变的胶合公式。

Given a fiber bundle with closed connected fibers, and a family of separating hypersurfaces, we study the behavior of the Bismut-Lott analytic torsion form, and the eta form for a duality bundle, under analytic surgery in the sense of Hassell, Mazzeo and Melrose. We find that under the surgery limit, the rescaled heat kernel is non-singular, while both the Bismut-Lott analytic torsion form and eta form can be written as the sum of a logarithmic term, which satisfies the Igusa additivity property, the b- Bismut-Lott analytic torsion form (respectively the b- eta form), and an error term coming from the reduced normal operator. Hence we obtain a gluing formula for these invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源