论文标题
颠覆机器,波动的身份:重新学习人类分类
Subverting machines, fluctuating identities: Re-learning human categorization
论文作者
论文摘要
与人类互动的大多数机器学习系统都构建了一个人的“身份”概念,但是AI研究中的默认范式设想了具有离散和静态的基本属性的身份。与之形成鲜明对比的是,批判理论中的思想链提出了一个可延展的身份的概念,并完全通过互动构建。做而不是存在。在这项工作中,我们将其中一些想法提炼为机器学习从业人员,并引入一种身份理论,例如自动驾驶,形成和功能的循环过程。我们认为,由于缺乏对我们的模型的迭代反馈,因此该领域使用的默认身份范式将现有身份类别和co $ \ unicode {x2010} $的功率差异范围发生。这包括对继续强加默认范式的紧急AI公平实践的批评。最后,我们将理论应用于通过多级优化和关系学习来绘制自动化身份的方法。尽管这些想法提出了许多开放的问题,但我们想象能够在不断变化的情况下将人类身份表达为一种关系的机器的可能性。
Most machine learning systems that interact with humans construct some notion of a person's "identity," yet the default paradigm in AI research envisions identity with essential attributes that are discrete and static. In stark contrast, strands of thought within critical theory present a conception of identity as malleable and constructed entirely through interaction; a doing rather than a being. In this work, we distill some of these ideas for machine learning practitioners and introduce a theory of identity as autopoiesis, circular processes of formation and function. We argue that the default paradigm of identity used by the field immobilizes existing identity categories and the power differentials that co$\unicode{x2010}$occur, due to the absence of iterative feedback to our models. This includes a critique of emergent AI fairness practices that continue to impose the default paradigm. Finally, we apply our theory to sketch approaches to autopoietic identity through multilevel optimization and relational learning. While these ideas raise many open questions, we imagine the possibilities of machines that are capable of expressing human identity as a relationship perpetually in flux.