论文标题
通过变异推理聚类功能数据
Clustering Functional Data via Variational Inference
论文作者
论文摘要
功能数据分析涉及每位受试者的一个或多个观察到的曲线,随着时间的推移(或任何其他连续体)的密集记录的数据。从概念上讲,功能数据是连续定义的,但实际上,它们通常在离散点观察到它们。在不同类型的功能数据分析中,聚类分析旨在在没有关于每个单个曲线的组成员资格的信息时确定数据集中曲线的基本曲线。在这项工作中,我们提出了一种基于模型的新方法,用于通过变异推理同时聚类和平滑功能数据。我们通过找到最小的kullback-leibler差异与后部的变异分布,从而得出坐标均值上升的均值变化贝叶斯算法,以近似模型参数的后验分布。使用模拟数据和公开可用数据集评估我们提出的方法的性能。
Functional data analysis deals with data recorded densely over time (or any other continuum) with one or more observed curves per subject. Conceptually, functional data are continuously defined, but in practice, they are usually observed at discrete points. Among different kinds of functional data analyses, clustering analysis aims to determine underlying groups of curves in the dataset when there is no information on the group membership of each individual curve. In this work, we propose a new model-based approach for clustering and smoothing functional data simultaneously via variational inference. We derive coordinate ascent mean-field variational Bayes algorithms to approximate the posterior distribution of our model parameters by finding the variational distribution with the smallest Kullback-Leibler divergence to the posterior. The performance of our proposed method is evaluated using simulated data and publicly available datasets.