论文标题
使用SEQ2SEQ模型校正临床对话转录误差校正
Clinical Dialogue Transcription Error Correction using Seq2Seq Models
论文作者
论文摘要
良好的沟通对于良好的医疗保健至关重要。临床对话是卫生从业人员及其患者之间的对话,其明确的目标是获得和共享医疗信息。这些信息有助于有关患者的医疗决策,并在其医疗保健旅程中起着至关重要的作用。对笔记的依赖和手动抄写过程的效率极低,在数字化笔记时会导致手动转录错误。自动语音识别(ASR)在语音到文本应用程序中起着重要作用,并且可以直接用作对话应用程序中的文本生成器。但是,记录临床对话提出了许多一般和领域特定的挑战。在本文中,我们提出了一种用于临床对话的ASR转录误差校正的SEQ2SEQ学习方法。我们介绍了新的胃肠道临床对话(GCD)数据集,该数据集是由NHS炎症性肠病诊所的医疗保健专业人员收集的,并在与四个商业ASR系统的比较研究中使用了这一点。使用自我划分的策略,我们使用特定领域的PubMed数据集对掩盖填充任务进行了SEQ2SEQ模型,我们已将其公开共享以供将来的研究。 BART模型用于掩盖填充的模型能够纠正转录误差,并在四个商业ASR输出中的三分之三获得较低的单词错误率。
Good communication is critical to good healthcare. Clinical dialogue is a conversation between health practitioners and their patients, with the explicit goal of obtaining and sharing medical information. This information contributes to medical decision-making regarding the patient and plays a crucial role in their healthcare journey. The reliance on note taking and manual scribing processes are extremely inefficient and leads to manual transcription errors when digitizing notes. Automatic Speech Recognition (ASR) plays a significant role in speech-to-text applications, and can be directly used as a text generator in conversational applications. However, recording clinical dialogue presents a number of general and domain-specific challenges. In this paper, we present a seq2seq learning approach for ASR transcription error correction of clinical dialogues. We introduce a new Gastrointestinal Clinical Dialogue (GCD) Dataset which was gathered by healthcare professionals from a NHS Inflammatory Bowel Disease clinic and use this in a comparative study with four commercial ASR systems. Using self-supervision strategies, we fine-tune a seq2seq model on a mask-filling task using a domain-specific PubMed dataset which we have shared publicly for future research. The BART model fine-tuned for mask-filling was able to correct transcription errors and achieve lower word error rates for three out of four commercial ASR outputs.