论文标题

semaffinet:点云分段的语义效果转换

SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation

论文作者

Wang, Ziyi, Rao, Yongming, Yu, Xumin, Zhou, Jie, Lu, Jiwen

论文摘要

常规点云语义分割方法通常采用编码器构造,其中中层特征在本地汇总以提取几何信息。但是,对这些类不足的局部几何表示的过度依赖可能会引起来自不同类别的本地部分之间的混淆,而外观或空间相邻。为了解决这个问题,我们认为可以通过语义信息进一步增强中层特征,并提出语义 - 诉式转换,该转换可以转换具有具有特定类别仿射参数的不同类别的中级点的特征。基于此技术,我们建议用于点云语义分割的SEMADVINET,它利用变压器模块中的注意力机制隐式,明确地捕获本地部分内的全局结构知识,以总体理解每个类别。我们在ScannETV2和NYUV2数据集上进行了广泛的实验,并评估了各种3D点云和2D图像分割基线的语义 - 植入转化,在这些基线中,定性和定量结果都证明了我们所提出的方法的优势和概括能力。代码可在https://github.com/wangzy22/semaffinet上找到。

Conventional point cloud semantic segmentation methods usually employ an encoder-decoder architecture, where mid-level features are locally aggregated to extract geometric information. However, the over-reliance on these class-agnostic local geometric representations may raise confusion between local parts from different categories that are similar in appearance or spatially adjacent. To address this issue, we argue that mid-level features can be further enhanced with semantic information, and propose semantic-affine transformation that transforms features of mid-level points belonging to different categories with class-specific affine parameters. Based on this technique, we propose SemAffiNet for point cloud semantic segmentation, which utilizes the attention mechanism in the Transformer module to implicitly and explicitly capture global structural knowledge within local parts for overall comprehension of each category. We conduct extensive experiments on the ScanNetV2 and NYUv2 datasets, and evaluate semantic-affine transformation on various 3D point cloud and 2D image segmentation baselines, where both qualitative and quantitative results demonstrate the superiority and generalization ability of our proposed approach. Code is available at https://github.com/wangzy22/SemAffiNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源